Tensegrity frameworks

Authors:
B. Roth and W. Whiteley

Journal:
Trans. Amer. Math. Soc. **265** (1981), 419-446

MSC:
Primary 51F99; Secondary 52A37, 53A17, 73K20

DOI:
https://doi.org/10.1090/S0002-9947-1981-0610958-6

MathSciNet review:
610958

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A tensegrity framework consists of bars which preserve the distance between certain pairs of vertices, cables which provide an upper bound for the distance between some other pairs of vertices and struts which give a lower bound for the distance between still other pairs of vertices. The present paper establishes some basic results concerning the rigidity, flexibility, infinitesimal rigidity and infinitesimal flexibility of tensegrity frameworks. These results are then applied to a number of questions, problems and conjectures regarding tensegrity frameworks in the plane and in space.

**[1]**L. Asimow and B. Roth,*The rigidity of graphs*, Trans. Amer. Math. Soc.**245**(1978), 279–289. MR**511410**, https://doi.org/10.1090/S0002-9947-1978-0511410-9**[2]**L. Asimow and B. Roth,*The rigidity of graphs. II*, J. Math. Anal. Appl.**68**(1979), no. 1, 171–190. MR**531431**, https://doi.org/10.1016/0022-247X(79)90108-2**[3]**E. D. Bolker and B. Roth,*When is a bipartite graph a rigid framework?*, Pacific J. Math.**90**(1980), no. 1, 27–44. MR**599317****[4]**C. R. Calladine,*Buckminster Fuller's "tensegrity" structures and Clerk Maxwell's rules for the construction of stiff frames*, Internat. J. Solids and Structures**14**(1978), 161-172.**[5]**Robert Connelly,*The rigidity of certain cabled frameworks and the second-order rigidity of arbitrarily triangulated convex surfaces*, Adv. in Math.**37**(1980), no. 3, 272–299. MR**591730**, https://doi.org/10.1016/0001-8708(80)90037-7**[6]**R. B. Fuller,*Synergetics: Explorations in the geometry of thinking*, Macmillan, New York, 1975.**[7]**Herman Gluck,*Almost all simply connected closed surfaces are rigid*, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 225–239. Lecture Notes in Math., Vol. 438. MR**0400239****[8]**Branko Grünbaum,*Convex polytopes*, With the cooperation of Victor Klee, M. A. Perles and G. C. Shephard. Pure and Applied Mathematics, Vol. 16, Interscience Publishers John Wiley & Sons, Inc., New York, 1967. MR**0226496****[9]**B. Grünbaum and G. Shephard,*Lectures in lost mathematics*, mimeographed notes, Univ. of Washington.**[10]**John Milnor,*Singular points of complex hypersurfaces*, Annals of Mathematics Studies, No. 61, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR**0239612****[11]**R. T. Rockafellar,*Convex analysis*, Princeton Univ. Press, Princeton, N. J., 1970.**[12]**B. Roth,*Rigid and flexible frameworks*, Amer. Math. Monthly**88**(1981), no. 1, 6–21. MR**619413**, https://doi.org/10.2307/2320705**[13]**Walter Whiteley,*Motions and stresses of projected polyhedra*, Structural Topology**7**(1982), 13–38. With a French translation. MR**721947****[14]**-,*Introduction to structural geometry*. II,*Statics and stresses*(preprint).**[15]**-,*Infinitesimally rigid polyhedra*(preprint).**[16]**-,*Motions, stresses and projected polyhedra*(preprint).

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
51F99,
52A37,
53A17,
73K20

Retrieve articles in all journals with MSC: 51F99, 52A37, 53A17, 73K20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1981-0610958-6

Article copyright:
© Copyright 1981
American Mathematical Society