Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On two-dimensional normal singularities of type $ {}\sb\ast A\sb{n}$, $ {}\sb\ast D\sb{n}$ and $ {}\sb\ast E\sb{n}$


Author: Shigeki Ohyanagi
Journal: Trans. Amer. Math. Soc. 266 (1981), 57-69
MSC: Primary 32C45; Secondary 14J17
DOI: https://doi.org/10.1090/S0002-9947-1981-0613785-9
MathSciNet review: 613785
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be the weighted dual graph associated with a contractible curve $ A = \cup {A_i}$. There are many combinations of the weights $ {A_i} \cdot {A_i}$ which make the graph contractible. If $ G$ is a graph which is the weighted dual graph for a rational singularity with any combination of the weights, then $ G$ is either $ {}_ \ast {A_n}$, $ {}_ \ast {D_n}$ or $ _\ast{E_n}$.


References [Enhancements On Off] (What's this?)

  • [1] V. Arnold, Local normal forms of functions, Invent. Math. 35 (1976), 87-109. MR 0467795 (57:7646)
  • [2] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-139. MR 0199191 (33:7340)
  • [3] E. Brieskorn, Rationale Singularitäten komplexer Flächen, Invent. Math. 14 (1968), 336-358. MR 0222084 (36:5136)
  • [4] I. V. Dolgachev, Quotient-conical sngularities on complex surfaces, Funkcional. Anal, i Priložen. 8 (1974), 75-76. (Russian) MR 0345974 (49:10700)
  • [5] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331-368. MR 0137127 (25:583)
  • [6] R. C. Gunning, Lectures on Riemann surfaces, Princeton Univ. Press, Princeton, N. J., 1966. MR 0207977 (34:7789)
  • [7] F. Hirzebruch, Hilbert modular surfaces, Enseign. Math. (2) 19 (1973), 183-281. MR 0393045 (52:13856)
  • [8] U. Karras, Klassifikationen zweidimensionaler Singularitäten mit auflösbaren lokalen Fundamentalgruppen, Math. Ann. 213 (1975), 231-255. MR 0379894 (52:799)
  • [9] H. B. Laufer, Normal two-dimensional singularities, Princeton Univ. Press, Princeton, N. J., 1971. MR 0320365 (47:8904)
  • [10] -, On rational singularities, Amer. J. Math. 94 (1972), 597-608. MR 0330500 (48:8837)
  • [11] -, Taut two-dimensional singularities, Math. Ann. 205 (1973), 131-164. MR 0333238 (48:11563)
  • [12] -, On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295. MR 0568898 (58:27961)
  • [13] -, Ambient deformations for exceptional sets in two-manifolds, Invent. Math. 55 (1979), 1-36. MR 553993 (81f:32027)
  • [14] H. Saito and S. Ohyanagi, On two-dimensional normal singularities whose minimal resolutions are of type $ {}_ \ast {\tilde D_n}$, Sci. Rep. Gunma Technical College 13 (1979), 27-32.
  • [15] P. Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419-454. MR 0291170 (45:264)
  • [16] K. Watanabe, On plurigenera of normal isolated singularities. I, Math. Ann. 250 (1980), 65-94. MR 581632 (82f:32025)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32C45, 14J17

Retrieve articles in all journals with MSC: 32C45, 14J17


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0613785-9
Keywords: Resolution of singularities, weighted dual graph, rational singularity, elliptic singularity
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society