Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Power series methods of summability: positivity and gap perfectness


Authors: A. Jakimovski, W. Meyer-König and K. Zeller
Journal: Trans. Amer. Math. Soc. 266 (1981), 309-317
MSC: Primary 40H05; Secondary 40G10
DOI: https://doi.org/10.1090/S0002-9947-1981-0613798-7
MathSciNet review: 613798
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A class of power series methods of summability is defined. By means of a positivity argument (Bohman-Korovkin) it is shown that each method of the class is gap perfect. This fact facilitates the proof of Tauberian gap theorems. Several examples are given.


References [Enhancements On Off] (What's this?)

  • [1] W. Beekmann und K. Zeller, Positive Operatoren in der Limitierung, Linear Operators and Approximation. II (Proc. Conf., Oberwolfach, 1974), Internat. Ser. Numer. Math. 25, Birkhäuser Verlag, Basel and Stuttgart, 1974, pp. 559-564. MR 0382894 (52:3776)
  • [2] G. H. Hardy, Divergent series, Clarendon Press, Oxford, 1949. MR 0030620 (11:25a)
  • [3] K. Ishiguro, A converse theorem on the summability methods, Proc. Japan Acad. 39 (1963), 38-41. MR 0146564 (26:4086)
  • [4] -, On the summability methods of divergent series, Acad. Roy. Belg. Cl. Sci. Mém. Coll. in-8$ ^\circ$(2) 35 (1965). MR 0211126 (35:2008)
  • [5] A. Jakimovski and H. Tietz, Regularly varying functions and powerseries methods, J. Math. Anal. Appl. 73 (1980), 65-84. MR 560937 (81b:40011)
  • [6] D. Kershaw, Regular and convergent Korovkin sequences, Linear Operators and Approximation. II (Proc. Conf., Oberwolfach, 1974), Internat. Ser. Numer. Math. 25, Birkhäuser Verlag, Basel and Stuttgart, 1974, pp. 377-389. MR 0385401 (52:6264)
  • [7] W. Kolodziej, Über den Beweis eines Satzes aus der Limitierungstheorie, Colloq. Math. 23 (1971), 299-300. MR 0305023 (46:4153)
  • [8] V. K. Krishnan, Gap Tauberian theorem for generalized Abel summability, Math. Proc. Cambridge Philos. Soc. 78 (1975), 497-500. MR 0399698 (53:3541)
  • [9] -, Gap Tauberian theorem for logarithmic summability $ (L)$, Quart. J. Math. Oxford Ser. (2) 30 (1979), 77-87. MR 528892 (80g:40012)
  • [10] S. Mazur und L. Sternbach, Über Konvergenzmengen von Folgen linearer Operationen, Studia Math. 4 (1933), 54-65.
  • [11] W. Meyer-König und K. Zeller, Lückenumkehrsätze und Lückenperfektheit, Math. Z. 66 (1956), 203-224.
  • [12] -, $ FK$-Räume und Lückenperfektheit, Math. Z. 78 (1962), 143-148.
  • [13] M. Stieglitz und H. Tietz, Matrixtransformationen von Folgenräumen, Eine Ergebnisübersicht, Math. Z. 154 (1977), 1-16. MR 0446785 (56:5109)
  • [14] C. T. Rajagopal, On Tauberian theorems for some standard methods of summability, J. Indian Math. Soc. 39 (1975), 69-82. MR 0415124 (54:3215)
  • [15] A. Wilansky and K. Zeller, Summation of bounded divergent sequences, topological methods, Trans. Amer. Math. Soc. 78 (1955), 501-509. MR 0067220 (16:690f)
  • [16] L. Wlodarski, Sur les méthodes continues de limitation $ ({\mathbf{I}})$, Studia Math. 14 (1954), 161-187. MR 0068013 (16:814b)
  • [17] K. Zeller und W. Beekmann, Theorie der Limitierungsverfahren, Springer-Verlag, Berlin and New York, 1970. MR 0264267 (41:8863)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 40H05, 40G10

Retrieve articles in all journals with MSC: 40H05, 40G10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1981-0613798-7
Keywords: Power series methods of summability, positivity, gap perfectness, Tauberian gap theorems, generalized Abel methods of summability, logarithmic method of summability
Article copyright: © Copyright 1981 American Mathematical Society

American Mathematical Society