Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Highly connected embeddings in codimension two

Author: Susan Szczepanski
Journal: Trans. Amer. Math. Soc. 280 (1983), 139-159
MSC: Primary 57R40; Secondary 57R67
MathSciNet review: 712253
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study semilocal knots over $ f$ into $ \xi $, that is, embeddings of a manifold $ N$ into $ E(\xi)$, the total space of a $ 2$-disk bundle over a manifold $ M$, such that the restriction of the bundle projection $ p:E(\xi) \to M$ to the submanifold $ N$ is homotopic to a normal map of degree one, $ f:N \to N$. We develop a new homology surgery theory which does not require homology equivalences on boundaries and, in terms of these obstruction groups, we obtain a classification (up to cobordism) of semilocal knots over $ f$ into $ \xi $. In the simply connected case, the following geometric consequence follows from our classification. Every semilocal knot of a simply connected manifold $ M\char93 K$ in a bundle over $ M$ is cobordant to the connected sum of the zero section of this bundle with a semilocal knot of the highly connected manifold $ K$ into the trivial bundle over a sphere.

References [Enhancements On Off] (What's this?)

  • [B] W. Browder, Surgery on simply-connected manifolds, Springer-Verlag, Berlin and New York, 1972. MR 0358813 (50:11272)
  • [CS] S. E. Cappell and J. L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. (2) 99 (1974), 277-348. MR 0339216 (49:3978)
  • [KS] R. C. Kirby and L. C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Ann. of Math. Studies, No. 88, Princeton Univ. Press, Princeton, N. J., 1977. MR 0645390 (58:31082)
  • [KSz] K. W. Kwun and R. H. Szczarba, Product and sum theorems for Whitehead torsion, Ann. of Math. (2) 82 (1965), 183-190. MR 0182972 (32:454)
  • [LR] R. K. Lashof and M. G. Rothenberg, Triangulation of manifolds. I, II, Bull. Amer. Math. Soc. 75 (1969), 750-757. MR 0247631 (40:895)
  • [LS] R. K. Lashof and J. L. Shaneson, Classification of knots in codimension two, Bull. Amer. Math. Soc. 75 (1969), 171-175. MR 0242175 (39:3508)
  • [M] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Studies, No. 61, Princeton Univ. Press, Princeton, N. J., 1968. MR 0239612 (39:969)
  • [M1] -, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426. MR 0196736 (33:4922)
  • [O] S. Ocken, Parameterized knot theory, Mem. Amer. Math. Soc. No. 170 (1976). MR 0405439 (53:9232)
  • [R] A. Ranicki, Exact sequences in the algebraic theory of surgery, Math. Notes, Vol. 26, Princeton Univ. Press, Princeton, N. J., 1981. MR 620795 (82h:57027)
  • [Sh] J. L. Shaneson, Wall's surgery obstruction groups for $ {\mathbf{Z}} \times G$, Ann. of Math. (2) 90 (1969), 296-334. MR 0246310 (39:7614)
  • [V] R. Vogt, Cobordimus von hochzusämmenhangenden Knoten, Bonner. Math. Schriften, 116, Universität Bonn, Math. Institut, Bonn, 1980. MR 578661 (82c:57016)
  • [W] C. T. C. Wall, Surgery on compact manifolds, Academic Press, New York, 1970. MR 0431216 (55:4217)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R40, 57R67

Retrieve articles in all journals with MSC: 57R40, 57R67

Additional Information

Keywords: Surgery, cobordism of embeddings, Hermitian forms, highly connected maps and manifolds
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society