Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Forcing positive partition relations


Author: Stevo Todorčević
Journal: Trans. Amer. Math. Soc. 280 (1983), 703-720
MSC: Primary 03E35; Secondary 03C62, 03E05, 54A35
DOI: https://doi.org/10.1090/S0002-9947-1983-0716846-0
MathSciNet review: 716846
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show how to force two strong positive partition relations on $ {\omega_1}$ and use them in considering several well-known open problems.


References [Enhancements On Off] (What's this?)

  • [1] U. Avraham and S. Shelah, Martin's axiom does not imply that every two $ {\aleph_1}$-dense sets of reals are isomorphic, Israel J. Math. 38 (1981), 161-176. MR 599485 (82a:03048)
  • [2] -, Isomorphism types of Aronszajn trees (to appear).
  • [3] U. Avraham, M. Rubin and S. Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of $ {\aleph_1}$-dense real order types (to appear).
  • [4] U. Avraham and S. Todorčević. Martin's axiom and first countable $ S$ and $ L$ spaces, Handbook of the Set-Theoretic Topology (to appear).
  • [5] J. Baumgartner, Iterated forcing (to appear). MR 823775 (87c:03099)
  • [6] -, Application of the proper forcing axiom, Handbook of the Set-Theoretic Topology (to appear).
  • [7] K. J. Devlin, The Yorkshireman's guide to proper forcing (to appear).
  • [8] K. J. Devlin and H. Johnstråten, The Souslin problem, Lecture Notes in Math., vol. 405, Springer-Verlag, Berlin and New York, 1974. MR 0384542 (52:5416)
  • [9] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610. MR 0004862 (3:73a)
  • [10] B. A. Efimov, On the cardinality of Hausdorff spaces, Dokl. Akad. Nauk SSSR 164 (1965), 967-970. (Russian) MR 0190891 (32:8301)
  • [11] P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427-489. MR 0081864 (18:458a)
  • [12] P. Erdös and A. Hajnal, Unsolved problems in set theory, Axiomatic Set Theory, Proc. Sympos. Pure Math., vol. 13, Part I, Amer. Math. Soc., Providence, R.I., 1971, pp. 14-48. MR 0280381 (43:6101)
  • [13] -, Unsolved and solved problems in set theory (Proceedings of the Tarski Symposium), Proc. Sympos. Pure Math., vol. 25, Amer. Math. Soc., Providence, R.I., 1974, pp. 267-287. MR 0357122 (50:9590)
  • [14] V. Fedorčuk, On the cardinality of hereditarily separable compuct Hausdorff spaces, Soviet Math. Dokl. 16 (1975), 651-655.
  • [15] F. Galvin, On Gruenhage's generalization of first countable spaces. II, Notices Amer. Math. Soc. 24 (1977), A-257.
  • [16] J. de Groot, Discrete subspaces of Hausdorff spaces, Bull. Acad. Polon. Sci. 13 (1965), 537-544. MR 0210061 (35:956)
  • [17] A. Hajnal, Some results and problems in set theory, Acta Math. Acad. Sci. Hungar. 11 (1960), 277-298. MR 0150044 (27:47)
  • [18] A. Hajnal and I. Juhász, Discrete subspaces of topological spaces, Nederl. Akad. Wetensch. Indag. Math. 29 (1967), 343-356. MR 0229195 (37:4769)
  • [19] -, A consistency result concerning hereditarily $ \alpha $-separable spaces, Nederl. Akad. Wetensch. Indag. Math. 81 (1973), 301-307. MR 0362187 (50:14629)
  • [20] J. Isbell, Remarks on spaces of large cardinal numbers, Czechoslovak Math. J. 14 (89) (1964), 383-385. MR 0177383 (31:1646)
  • [21] T. J. Jech, Set theory, Academic Press, New York, 1978. MR 506523 (80a:03062)
  • [22] I. Juhász, A survey of $ S$ and $ L$ spaces, Topology Colloq. Math. Soc. János Bolyai. vol. 23, North-Holland, Amsterdam, 1980, pp. 674-688. MR 588816 (81j:54001)
  • [23] K. Kunen, Set theory, North-Holland, Amsterdam, 1980. MR 597342 (82f:03001)
  • [24] R. Laver, Partition relations for uncountable cardinals $ \leqslant {2^{\aleph_0}}$, Infinite and Finite sets. Vol. II, Colloq. Math. Soc. János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 1029-1042. MR 0371652 (51:7870)
  • [25] -, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169. MR 0422027 (54:10019)
  • [26] W. J. Mitchell, Aronszujn trees und the independence of the transfer property, Ann. Math. Logic 5 (1972), 21-46. MR 0313057 (47:1612)
  • [27] F. P. Ramsey, On the problem of formal logic. Proc. London Math. Soc. (2) 30 (1930), 264-286.
  • [28] J. Roitman, Basic $ S$ and $ L$, Handbook of the Set-Theoretic Topology (to appear). MR 776626 (87a:54043)
  • [29] M. E. Rudin, A normal hereditarily separable non-Lindelöf space, Illinois J. Math. 10 (1972), 621-626. MR 0309062 (46:8173)
  • [30] -, $ S$ and $ L$ spaces, Surveys in General Topology, Academic Press, 1980, pp. 431-444. MR 564109 (81d:54003)
  • [31] S. Shelah, Proper forcing, Lectures Notes in Math., vol. 940, Springer-Verlag, Berlin, Heidelberg and New York, 1982. MR 675955 (84h:03002)
  • [32] W. Sierpiński, Sur un problème de la théorie des relutions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 2 (1933), 285-287.
  • [33] R. M. Solovay and S. Tennenbaum, Iterated Cohen extensions and Souslin's problem, Ann. of Math. (2) 94 (1971), 201-245. MR 0294139 (45:3212)
  • [34] S. Todorčević, On the $ S$-space problem, Abstracts Amer. Math. Soc. 2 (1981), no. 4, A-394.
  • [35] -, $ {\omega_1} \to {({\omega_1},\omega + 2)^2}$ is consistent, Abstracts Amer. Math. Soc. 2 (1981), no. 5, A-462.
  • [36] -, On the cardinality of Hausdorff spaces, Abstracts Amer. Math. Soc. 2 (1981), no. 6, A-529.
  • [37] N. H. Williams, Combinatorial set theory, North-Holland, Amsterdam, 1977.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03E35, 03C62, 03E05, 54A35

Retrieve articles in all journals with MSC: 03E35, 03C62, 03E05, 54A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1983-0716846-0
Article copyright: © Copyright 1983 American Mathematical Society

American Mathematical Society