Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Haefliger structures and linear homotopy


Author: Javier Bracho
Journal: Trans. Amer. Math. Soc. 282 (1984), 529-538
MSC: Primary 57R32; Secondary 18G30, 54F99, 55R15, 55U40
DOI: https://doi.org/10.1090/S0002-9947-1984-0732104-3
MathSciNet review: 732104
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The notion of linear-homotopy into a classifying space is introduced and used to give a precise classification of Haefliger structures. Appendix on the product theorem for simplicial spaces and realizations of bisimplicial spaces.


References [Enhancements On Off] (What's this?)

  • [B] J. Bracho, Strong classification of Haefliger Structures; some geometry of BG, Proc. Adem's Internat. Topology Sympos., Oaxtepec, Amer. Math. Soc., Providence, R. I., 1981.
  • [H] A. Haefliger, Homotopy and integrability, Lecture Notes in Math., vol. 197, Springer-Verlag, Berlin and New York, 1971, pp. 133-163. MR 0285027 (44:2251)
  • [Hu] Sze-Tsen Hu, Elements of general topology, 3rd ed., Holden-Day, San Francisco, Calif., 1969. MR 0177380 (31:1643)
  • [M] J. Milnor, The realization of a semi-simplicial complex, Ann. of Math. (2) 63 (1957), 272-284. MR 0084138 (18:815d)
  • [S] G. Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 105-112. MR 0232393 (38:718)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R32, 18G30, 54F99, 55R15, 55U40

Retrieve articles in all journals with MSC: 57R32, 18G30, 54F99, 55R15, 55U40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0732104-3
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society