Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The structure of Galois groups of $ {\rm CM}$-fields


Author: B. Dodson
Journal: Trans. Amer. Math. Soc. 283 (1984), 1-32
MSC: Primary 11R32; Secondary 11G10, 20B25
DOI: https://doi.org/10.1090/S0002-9947-1984-0735406-X
MathSciNet review: 735406
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A $ CM$-field $ K$ defines a triple $ (G,H,\rho )$, where $ G$ is the Galois group of the Galois closure of $ K$, $ H$ is the subgroup of $ G$ fixing $ K$, and $ \rho \in G$ is induced by complex conjugation. A "$ \rho $-structure" identifies $ CM$-fields when their triples are identified under the action of the group of automorphisms of $ G$. A classification of the $ \rho $-structures is given, and a general formula for the degree of the reflex field is obtained. Complete lists of $ \rho $-structues and reflex fields are provided for $ [K:\mathbb{Q}] = 2n$, with $ n = 3,4,5$ and $ 7$. In addition, simple degenerate Abelian varieties of $ CM$-type are constructed in every composite dimension. The collection of reflex fields is also determined for the dihedral group $ G = {D_{2n}}$, with $ n$ odd and $ H$ of order $ 2$, and a relative class number formula is found.


References [Enhancements On Off] (What's this?)

  • [1] D. Bertrand and M. Waldschmidt (Editors), Functions Abeliennes et nombres transcendants, Soc. Math. France, 2$ ^{e}$ Ser., Mem. No. 2, 1980. Papers of Deligne, pp. 23-24; Ribet, pp. 75-94; and Shimura, pp. 103-106. MR 608633 (82c:10047)
  • [2] F. N. Cole, List of the transitive substitutions groups of ten and of eleven letters, Quart. J. Pure Appl. Math. 27 (1895), 39-50.
  • [3] H. Coxeter and W. Moser, Generators and relations for discrete groups, 4th ed., Springer-Verlag, Berlin and New York, 1980. MR 562913 (81a:20001)
  • [4] W. Feit, Some consequences of the classification of finite simple groups, Proc. Sympos. Pure Math., Vol. 37, Amer. Math. Soc., Providence, R.I., 1980, pp. 175-182. MR 604576 (82c:20019)
  • [5] M. Hall, Jr. and J. Senior, The groups of order $ {2^n}(n \leqslant 6)$, Macmillan, New York, 1964. MR 0168631 (29:5889)
  • [6] P. Hall, Classification of prime power groups, J. Reine Angew. Math 182 (1940), 130-141. MR 0003389 (2:211b)
  • [7] E. Hecke, Bestimmung der Klassenzahl einer Neuen Reihe von A Igebraischen Zahlkorpern, Nachr. K. Ges. Wiss. Gottingen, 1921, pp. 1-23 (= Mathematische Werke #15).
  • [8] T. Kubota, On the field extension by complex multiplication, Trans. Amer. Math. Soc. 118 (1965), 113-122. MR 0190144 (32:7558)
  • [9] F. MacWilliams and N. Sloane, The theory of error-correcting codes. I, North-Holland, Amsterdam, 1977. MR 0465509 (57:5408a)
  • [10] G. A. Miller, Memoir on the substitution groups whose degrees do not exceed eight, Amer. J. Math. 21 (1899), 287-338. MR 1505804
  • [11] -, Collected works, Vol. I, Univ. of Illinois Press, Urbana, Ill., 1935.
  • [12] H. Pohlmann, Algebraic cycles on Abelian varieties of complex multiplication types, Ann. of Math. (2) 88 (1968), 161-180. MR 0228500 (37:4080)
  • [13] B. Puttaswamaiah and J. Dixon, Modular representations of finite groups, Academic Press, New York, 1977. MR 0442071 (56:459)
  • [14] K. Ribet, Division fields of Abelian varieties with complex multiplication, Soc. Math. France, 2$ ^{e}$ Ser., Mem. No. 2, 1980, pp. 75-94. MR 608640 (83e:14029a)
  • [15] -, Generalization of a theorem of Tankeev, Sém. Théorie des Nombres, année 1981-1982, Exp. no. 17, 1982. MR 695334 (84h:14051)
  • [16] J.-P. Serre, Linear representations of finite groups, Springer-Verlag, Berlin and New York, 1977, English transl. of French edition, Hermann, Paris, 1971. MR 0450380 (56:8675)
  • [17] G. Shimura, On the class-fields obtained by complex multiplication of Abelian varieties, Osaka Math. J. 14 (1962), 33-44. MR 0170893 (30:1128)
  • [18] -, On canonical models of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2) 91 (1970), 144-222. MR 0257031 (41:1686)
  • [19] -, On the zeta-function of an Abelian variety with complex multiplication, Ann. of Math. (2) 94, (1971), 504-533. MR 0288089 (44:5287)
  • [20] -, On Abelian varieties with complex multiplication, Proc. London Math. Soc. 34 (1977), 63-86. MR 0572987 (58:28008)
  • [21] -, Automorphic forms and the periods of Abelian varieties, J. Math. Soc. Japan 31 (1979), 562-592. MR 535097 (81j:10034)
  • [22] -, The arithmetic of certain zeta functions and automorphic forms on orthogonal groups, Ann. of Math. (2) 111 (1980), 313-375. MR 569074 (81g:10041)
  • [23] G. Shimura and Y. Taniyama, Complex multiplication of Abelian varieties and its applications to number theory, Publ. Math. Soc. Japan No. 6 (1961). MR 0125113 (23:A2419)
  • [24] A. Weil, Abelian varieties and the Hodge ring, [1977c], Collected Papers, Vol. Ill, Springer-Verlag, Berlin and New York, pp. 421-429.
  • [25] H. Zassenhaus, On the group of an equation, Computers in Algebra and Number Theory (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1970), SIAM-AMS Proc, Vol. IV (G. Birkhoff, M. Hall, eds.), Amer. Math. Soc., Providence, R.I., 1971. MR 0327414 (48:5756)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11R32, 11G10, 20B25

Retrieve articles in all journals with MSC: 11R32, 11G10, 20B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0735406-X
Keywords: Complex multiplication of Abelian varieties, reflex field, nondegenerate Abelian variety of $ CM$-type, imprimitive permutation groups, relative class number
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society