Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Unicellular operators


Authors: José Barría and Kenneth R. Davidson
Journal: Trans. Amer. Math. Soc. 284 (1984), 229-246
MSC: Primary 47A15; Secondary 47A45, 47B37
DOI: https://doi.org/10.1090/S0002-9947-1984-0742423-2
MathSciNet review: 742423
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An operator is unicellular if its lattice of invariant subspaces is totally ordered by inclusion. The list of nests which are known to be the set of invariant subspaces of a unicellular operator is surprisingly short. We construct unicellular operators on $ {l^p},1 \leqslant p < \infty $, and on $ {c_0}$ with lattices isomorphic to $ \alpha + X + {\beta ^{\ast}}$ where $ \alpha $ and $ \beta $ are countable (finite or zero) ordinals, and $ X$ is in this short list. Certain other nests are attained as well.


References [Enhancements On Off] (What's this?)

  • [1] J. Barría, On chains of invariant subspaces, Doctoral dissertation, Indiana University, 1974.
  • [2] -, The invariant subspaces of a Volterra operator, J. Operator Theory 6 (1981), 341-349. MR 643695 (83g:47002)
  • [3] K. R. Davidson, Similarity and compact perturbations of nest algebras, J. Reine Angew. Math. (to appear). MR 733923 (86c:47062)
  • [4] J. Dixmier, Les opérateurs permutables á l'opérateur integral, Portugal. Math. 8 (1949), 73-84.
  • [5] Y. Domar, Translation invariant subspaces of weighted $ {l^p}$ and $ {L^p}$ spaces, Math. Scand. 49 (1981), 133-144. MR 645094 (83k:47022)
  • [6] W. F. Donoghue, The lattice of invariant subspaces of a completely continuous quasinilpotent transformation, Pacific J. Math. 7 (1957), 1031-1035. MR 0092124 (19:1066f)
  • [7] R. Gellar and D. A. Herrero, Hyperinvariant subspaces of bilateral weighted shifts, Indiana Univ. Math. J. 23 (1974), 771-790. MR 0331083 (48:9417)
  • [8] K. J. Harrison and W. E. Longstaff, An invariant subspace lattice of order type $ \omega + \omega + 1$, Proc. Amer. Math. Soc. 79 (1980), 45-49. MR 560581 (81g:47002)
  • [9] D. Larson, Nest algebras and similarity transformations, Ann. of Math. (to appear). MR 794368 (86j:47061)
  • [10] N. K. Nikol'skii, Invariant subspaces of weighted shift operators, Math. USSR-Sb. 3 (1967), 159-175. MR 0229081 (37:4659)
  • [11] -, The unicellularity and nonunicellularity of weighted shift operators, Soviet Math. Dokl. 8 (1967), 91-94.
  • [12] -, Selected problems of weighted approximation and spectral analysis, Proc. Steklov Inst. Math. 120 (1974).
  • [13] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, Berlin and New York, 1973. MR 0367682 (51:3924)
  • [14] P. Rosenthal, Examples of invariant subspace lattices, Duke Math. J. 37 (1970), 103-112. MR 0251570 (40:4797)
  • [15] A. Shields, Weighted shift operators and analytic function theory, Topics in Operator Theory (C. Pearcy, ed.), Math. Surveys, vol. 13, Amer. Math. Soc., Providence, R. I., 1974, pp. 49-128. MR 0361899 (50:14341)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47A15, 47A45, 47B37

Retrieve articles in all journals with MSC: 47A15, 47A45, 47B37


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1984-0742423-2
Keywords: Unicellular operator, invariant subspaces, attainable lattices
Article copyright: © Copyright 1984 American Mathematical Society

American Mathematical Society