Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sobolev space projections in strictly pseudoconvex domains


Author: Harold P. Boas
Journal: Trans. Amer. Math. Soc. 288 (1985), 227-240
MSC: Primary 32H05; Secondary 32F15
DOI: https://doi.org/10.1090/S0002-9947-1985-0773058-4
MathSciNet review: 773058
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The orthogonal projection from a Sobolev space $ {W^s}(\Omega )$ onto the subspace of holomorphic functions is studied. This analogue of the Bergman projection is shown to satisfy regularity estimates in higher Sobolev norms when $ \Omega $ is a smooth bounded strictly pseudoconvex domain in $ {{\mathbf{C}}^n}$.


References [Enhancements On Off] (What's this?)

  • [1] R. A. Adams, Sobolev spaces. Academic Press, New York, 1975. MR 0450957 (56:9247)
  • [2] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337-404. MR 0051437 (14:479c)
  • [3] D. Barrett, Regularity of the Bergman projection on domains with transverse symmetries, Math. Ann. 258 (1982), 441-446. MR 650948 (83i:32032)
  • [4] S. R. Bell, Biholomorphic mappings and the $ \bar \partial $-problem, Ann. of Math. 114 (1981), 103-113. MR 625347 (82j:32039)
  • [5] -, A representation theorem in strictly pseudoconvex domains, Illinois J. Math. 26 (1982), 19-26. MR 638551 (83c:32036)
  • [6] S. R. Bell and H. P. Boas, Regularity of the Bergman projection and duality of holomorphic function spaces, Math. Ann. 267 (1984), 473-478. MR 742893 (86a:32047)
  • [7] S. R. Bell and D. Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), 385-396. MR 659947 (84b:32037a)
  • [8] S. Bergman, The kernel function and conformal mapping, 2nd ed., Math. Surveys, no. 5, Amer. Math. Soc., Providence, R. I., 1970. MR 0507701 (58:22502)
  • [9] H. P. Boas, Holomorphic reproducing kernels in Reinhardt domains, Pacific J. Math. 112 (1984), 273-292. MR 743985 (85j:32038)
  • [10] -, Regularity of the Szegö projection in domains of finite type, in preparation.
  • [11] D. Catlin, Boundary invariants of pseudoconvex domains, Ann. of Math. (in press).
  • [12] J. P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. 115 (1982), 615-637. MR 657241 (84a:32027)
  • [13] K. Diederich and J. E. Fornaess, Boundary regularity of proper holomorphic mappings, Invent. Math. 67 (1982), 363-384. MR 664111 (84b:32037b)
  • [14] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1-65. MR 0350069 (50:2562)
  • [15] G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Ann. of Math. Studies, no. 75, Princeton Univ. Press, Princeton, N. J., 1972. MR 0461588 (57:1573)
  • [16] N. Kerzman, The Bergman kernel. Differentiability at the boundary, Math. Ann. 195 (1972), 149-158. MR 0294694 (45:3762)
  • [17] J. I. Kohn, Harmonic integrals on strongly pseudoconvex manifolds, I, II, Ann. of Math. 78 (1963), 112-148; 79 (1964), 450-472.
  • [18] J. L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I, Springer-Verlag, New York, 1972. MR 0350177 (50:2670)
  • [19] D. H. Phong and E. M. Stein, Estimates for the Bergman and Szegö projections on strongly pseudo-convex domains, Duke Math. J. 44 (1977), 695-704. MR 0450623 (56:8916)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 32H05, 32F15

Retrieve articles in all journals with MSC: 32H05, 32F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0773058-4
Keywords: Bergman kernel function, $ \bar \partial $-Neumann problem, pseudoconvex domains
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society