Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Convolution equations in spaces of distributions with one-sided bounded support


Authors: R. Shambayati and Z. Zielezny
Journal: Trans. Amer. Math. Soc. 289 (1985), 707-713
MSC: Primary 46F10; Secondary 45E10, 46F12
DOI: https://doi.org/10.1090/S0002-9947-1985-0784010-7
MathSciNet review: 784010
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal{D}\prime(0,\infty )$ be the space of distributions on $ R$ with support in $ [0,\infty )$ and $ \mathcal{S}\prime(0,\infty )$ its subspace consisting of tempered distributions. We characterize the distributions $ S \in \mathcal{D}\prime(0,\infty )$ for which $ S\, \ast \mathcal{D}\prime(0,\infty ) = \mathcal{D}\prime(0,\infty )$, where $ \ast $ is the convolution. We also characterize the distributions $ S \in \mathcal{S}\prime(0,\infty )$ for which $ S \ast \mathcal{S}\prime(0,\infty ) = \mathcal{S}\prime(0,\infty )$.


References [Enhancements On Off] (What's this?)

  • [1] L. Ehrenpreis, Solutions of some problems of division. IV, Amer. J. Math. 82 (1960), 522-588. MR 0119082 (22:9848)
  • [2] L. Hörmander, On the range of convolution operators, Ann. of Math. (2) 76 (1962), 148-170. MR 0141984 (25:5379)
  • [3] J. Mikusinski, Un simple demonstration du théorème de Titchmarsh sur la convolution, Bull. Acad. Polon. Sci. 7 (1959), 715 -718. MR 0111996 (22:2854)
  • [4] L. Schwartz, Théorie des distributions. II, Hermann, Paris, 1951. MR 0041345 (12:833d)
  • [5] R. Shambayati and Z. Zielezny, On Fourier transforms of distributions with one-sided bounded support, Proc. Amer. Math. Soc. 88 (1983), 237-243. MR 695250 (84h:46052)
  • [6] E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1937.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46F10, 45E10, 46F12

Retrieve articles in all journals with MSC: 46F10, 45E10, 46F12


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1985-0784010-7
Article copyright: © Copyright 1985 American Mathematical Society

American Mathematical Society