Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Fixed sets of framed $ G$-manifolds


Author: Stefan Waner
Journal: Trans. Amer. Math. Soc. 298 (1986), 421-429
MSC: Primary 57R85; Secondary 57S17
DOI: https://doi.org/10.1090/S0002-9947-1986-0857451-8
MathSciNet review: 857451
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This note describes restrictions on the framed bordism class of a framed manifold $ Y$ in order that it be the fixed set of some framed $ G$-manifold $ M$ with $ G$ a finite group. These results follow from a recently proved generalization of the Segal conjecture, and imply, in particular, that if $ M$ is a framed $ G$-manifold of sufficiently high dimension, and if $ G$ is a $ p$-group, then the number of ``noncancelling'' fixed points is either zero or approaches infinity as the dimension of $ M$ goes to infinity. Conversely, we give sufficient conditions on the framed bordism class of a manifold $ Y$ that it be the fixed set of some framed $ G$-manifold $ M$ of arbitrarily high dimension.


References [Enhancements On Off] (What's this?)

  • [A1] J. F. Adams, J. P. Haeberly, S. Jackowski and J. P. May, A generalization of the Segal conjecture, Preprint, Univ. of Chicago, 1985.
  • [C1] G. Carlsson, Equivariant stable homotopy and Segal's Burnside ring conjecture, Ann. of Math. 120 (1984), 189-224. MR 763905 (86f:57036)
  • [CF] P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Math., N.F., Vol. 33, Academic Press, New York; Springer, Berlin, 1964. MR 0176478 (31:750)
  • [CW] J. Caruso and S. Waner, An approximation theorem for equivariant loop spaces in the compact Lie case, Pacific J. Math. 117 (1985), 27-49. MR 777436 (86i:55014)
  • [H1] H. Hauschild, Zerspaltung äquivariante homotopiemengen, Math. Ann. 230 (1977), 279-292. MR 0500966 (58:18451)
  • [K1] C. Kosniowski, A note on $ RO(G)$-graded $ G$-bordism theory, Quart. J. Math. Oxford Ser. 26 (1975), 411-419. MR 0388418 (52:9254)
  • [P1] W. Pulikowski, $ RO(G)$-graded $ G$-bordism theory, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 21 (1973), 991-995. MR 0339234 (49:3996a)
  • [W1] S. Waner, Classification of oriented equivariant spherical fibrations, Trans. Amer. Math. Soc. 271 (1982), 313-323. MR 648095 (83g:57026)
  • [W2] W. Waner, Equivariant $ RO(G)$-graded bordism theories, Topology Appl. 17 (1984), 1-26. MR 730020 (85e:57042)
  • [W3] A. G. Wasserman, Equivariant differential topology, Topology 8 (1969), 127-150. MR 0250324 (40:3563)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R85, 57S17

Retrieve articles in all journals with MSC: 57R85, 57S17


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1986-0857451-8
Article copyright: © Copyright 1986 American Mathematical Society

American Mathematical Society