Chaotic maps with rational zeta function

Author:
H. E. Nusse

Journal:
Trans. Amer. Math. Soc. **304** (1987), 705-719

MSC:
Primary 58F13; Secondary 58F14, 58F20

DOI:
https://doi.org/10.1090/S0002-9947-1987-0911091-1

MathSciNet review:
911091

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Fix a nontrivial interval and let be a chaotic mapping. We denote by the set of points whose orbits do not converge to a (one-sided) asymptotically stable periodic orbit of or to a subset of the absorbing boundary of for .

A. We assume that satisfies the following conditions: (1) the set of asymptotically stable periodic points for is compact (an empty set is allowed), and (2) is compact, is expanding on . Then we can associate a matrix with entries either zero or one to the mapping such that the number of periodic points for with period is equal to the trace of the matrix ; furthermore the zeta function of is rational having the eigenvalues of as poles.

B. We assume that such that: (1) the Schwarzian derivative of is negative, and (2) the closure of is compact and for all in the closure of . Then we obtain the same result as in A.

**[1]**D. J. Allwright,*Hypergraphic functions and bifurcations in recurrence relations*, SIAM J. Appl. Math.**34**(1978), 687-691. MR**0475982 (57:15563)****[2]**M. Artin and B. Mazur,*On periodic points*, Ann. of Math. (2)**81**(1965), 82-99. MR**0176482 (31:754)****[3]**L. Block,*Simple periodic orbits of mappings of the interval*, Trans. Amer. Math. Soc.**254**(1979), 391-398. MR**539925 (80m:58031)****[4]**R. Bowen,*Markov partitions for Axiom*A*diffeomorphisms*, Amer. J. Math.**92**(1970), 725-747. MR**0277003 (43:2740)****[5]**P. Collet and J.-P. Eckmann,*Iterated maps on the interval as dynamical systems*, Birkhäuser, 1980. MR**613981 (82j:58078)****[6]**J. Guckenheimer,*On the bifurcations of maps of the interval*, Invent. Math.**39**(1977), 165-178. MR**0438399 (55:11312)****[7]**T. Y. Li and J. A. Yorke,*Period three implies chaos*, Amer. Math. Monthly**82**(1975), 985-992. MR**0385028 (52:5898)****[8]**J. Milnor and W. Thurston,*On iterated maps of the interval*. I*and*II, Mimeographed, Princeton Univ., 1977.**[9]**M. Misiurewicz,*Structure of mappings of an interval with zero entropy*, Inst. Hautes Études Sci. Publ. Math.**53**(1981), 5-16. MR**623532 (83j:58071)****[10]**-,*Absolutely continuous measures for certain maps of an interval*, Inst. Hautes Études Sci. Publ. Math.**53**(1981), 17-51. MR**623533 (83j:58072)****[11]**Z. Nitecki,*Topological dynamics on the interval*, Ergodic Theory and Dynamical Systems. II, Progress in Math., 21, Birkhäuser, 1982, pp. 1-73. MR**670074 (84g:54051)****[12]**H. E. Nusse,*Chaos, yet no chance to get lost*, Thesis, R. U. Utrecht, 1983. MR**765860 (86j:58069)****[13]**C. Preston,*Iterates of maps on an interval*., Lecture Notes in Math., vol. 999, Springer-Verlag, 1983. MR**706078 (85c:58058)****[14]**A. N. Sharkovsky,*Coexistence of the cycles of a continuous mapping of the line into itself*, Ukrain. Math. Zh.**16**(1964), 61-71. MR**0159905 (28:3121)****[15]**D. Singer,*Stable orbits and bifurcations of maps of the interval*, SIAM J. Appl. Math.**35**(1978), 260-267. MR**0494306 (58:13206)****[16]**S. Smale and R. F. Williams,*The qualitative analysis of a difference equation of population growth*, J. Math. Biol.**3**(1976), 1-4. MR**0414147 (54:2251)****[17]**P. Stefan,*A theorem of Sharkovsky on the existence of periodic orbits of continuous endomorphisms of the real line*, Comm. Math. Phys.**54**(1977), 237-248. MR**0445556 (56:3894)****[18]**P. D. Straffin,*Periodic points of continuous functions*, Math. Mag.**51**(178), 99-105. MR**498731 (80h:58043)****[19]**D. Whitley,*Discrete dynamical systems in dimensions one and two*, Bull. London Math. Soc.**15**(1983), 177-217. MR**697119 (84h:58079)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58F13,
58F14,
58F20

Retrieve articles in all journals with MSC: 58F13, 58F14, 58F20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1987-0911091-1

Keywords:
Iteration of mappings,
periodic points,
semigroup of chaotic mappings,
zeta function

Article copyright:
© Copyright 1987
American Mathematical Society