Characteristic multipliers and stability of symmetric periodic solutions of

Authors:
Shui-Nee Chow and Hans-Otto Walther

Journal:
Trans. Amer. Math. Soc. **307** (1988), 127-142

MSC:
Primary 34K20; Secondary 34C25, 58F14

DOI:
https://doi.org/10.1090/S0002-9947-1988-0936808-2

MathSciNet review:
936808

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the scalar delay differential equation with negative feedback. We assume that the nonlinear function is odd and monotone. We prove that periodic solutions of slowly oscillating type satisfying the symmetry condition , , are nondegenerate and have all nontrivial Floquet multipliers strictly inside the unit circle. This says that the periodic orbit in the phase space is orbitally exponentially asymptotically stable.

**[1]**H. Bohr,*Fastperiodische Funktionen*, Springer-Verlag, Berlin and New York, 1932. MR**0344794 (49:9533)****[2]**S. N. Chow, O. Diekmann, and J. Mallet-Paret,*Stability, multiplicity and global continuation of symmetric periodic solutions of a nonlinear Volterra integral equation*, Japan J. Appl. Math.**2**(1985), 433-469. MR**839338 (88e:45004)****[3]**J. Dieudonné,*Foundations of modern analysis*, Academic Press, New York, 1960. MR**0120319 (22:11074)****[4]**J. K. Hale,*Theory of functional differential equations*, Springer, New York, 1977. MR**0508721 (58:22904)****[5]**J. L. Kaplan and J. A. Yorke,*Ordinary differential equations which yield periodic solutions of differential delay equations*, J. Math Anal. Appl.**48**(1974), 317-324. MR**0364815 (51:1069)****[6]**-,*On the stability of a periodic solution of a differential delay equation*, SIAM J. Math. Anal.**6**(1975), 268-282. MR**0361367 (50:13812)****[7]**J. Mallet-Paret,*Morse decompositions and global continuation of periodic solutions of singularly perturbed delay equations*, Systems of Nonlinear Partial Differential Equations (J. M. Ball, ed.), Reidel, Dordrecht, 1983, pp. 351-365. MR**725532 (85b:58112)****[8]**R. D. Nussbaum,*Uniqueness and nonuniqueness for periodic solutions of*, J. Differential Equations**34**(1979), 25-54. MR**549582 (81f:34073)****[9]**H. O. Walther,*Density of slowly oscillating solutions of*, J. Math. Anal. Appl.**79**(1981), 127-140. MR**603381 (82c:34088)****[10]**-,*Bifurcation from periodic solutions in functional differential equations*, Math. Z.**182**(1983), 269-289. MR**689305 (84k:34078)****[11]**E. M. Wright,*A nonlinear difference-differential equations*, J. Reine Angew. Math.**194**(1955), 66-87. MR**0072363 (17:272b)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
34K20,
34C25,
58F14

Retrieve articles in all journals with MSC: 34K20, 34C25, 58F14

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1988-0936808-2

Article copyright:
© Copyright 1988
American Mathematical Society