Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weighted inequalities for one-sided maximal functions


Authors: F. J. Martín-Reyes, P. Ortega Salvador and A. de la Torre
Journal: Trans. Amer. Math. Soc. 319 (1990), 517-534
MSC: Primary 42B25
DOI: https://doi.org/10.1090/S0002-9947-1990-0986694-9
MathSciNet review: 986694
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ M_g^ + $ be the maximal operator defined by

$\displaystyle M_g^ + f(x) = \mathop {\sup }\limits_{h > 0} \left( {\int_x^{x + ... ... f(t)\vert g(t)dt} } \right){\left( {\int_x^{x + h} {g(t)dt} } \right)^{ - 1}},$

where $ g$ is a positive locally integrable function on $ {\mathbf{R}}$. We characterize the pairs of nonnegative functions $ (u,v)$ for which $ M_g^ + $ applies $ {L^p}(v)$ in $ {L^p}(u)$ or in weak- $ {L^p}(u)$. Our results generalize Sawyer's (case $ g = 1$) but our proofs are different and we do not use Hardy's inequalities, which makes the proofs of the inequalities self-contained.

References [Enhancements On Off] (What's this?)

  • [1] K. Andersen and B. Muckenhoupt, Weighted weak type inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), 9-26. MR 665888 (83k:42018)
  • [2] R. Coifman, P. W. Jones, and J. L. Rubio de Francia, Constructive decomposition of B.M.O. functions and factorization of $ {A_p}$ weights, Proc. Amer. Math. Soc. 87 (1983), 675-676. MR 687639 (84c:42031)
  • [3] J. Garcia-Cuerva, An extrapolation theorem in the theory of $ {A_p}$ weights, Proc. Amer. Math. Soc. 83 (1983), 422-426. MR 684631 (84c:42028)
  • [4] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland, Amsterdam, 1985. MR 807149 (87d:42023)
  • [5] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-226. MR 0293384 (45:2461)
  • [6] E. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), 1-11. MR 676801 (84i:42032)
  • [7] -, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), 53-61. MR 849466 (87k:42018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B25

Retrieve articles in all journals with MSC: 42B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0986694-9
Keywords: One-sided maximal functions, weighted inequalities, weights
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society