Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type


Authors: Nicola Garofalo and Ermanno Lanconelli
Journal: Trans. Amer. Math. Soc. 321 (1990), 775-792
MSC: Primary 35K65; Secondary 35A30, 35B05
DOI: https://doi.org/10.1090/S0002-9947-1990-0998126-5
MathSciNet review: 998126
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we establish a uniform Harnack inequality for a class of degenerate equations whose prototype is Kolmogorov's equations in $ {{\mathbf{R}}^3}:{D_{{\text{yy}}}}u - {\text{y}}{D_z}u - {D_t}u = 0$. Our approach is based on mean value formulas for solutions of the equation under consideration on the level sets of the fundamental solution.


References [Enhancements On Off] (What's this?)

  • [C] C. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Modern Phys. 15 (1943), 1-89. MR 0008130 (4:248i)
  • [FS] E. Fabes and D. W. Stroock, A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash, Arch. Rational Mech. Anal. 96 (1986), 327-338. MR 855753 (88b:35037)
  • [GL1] N. Garofalo and E. Lanconelli, Wiener's criterion for parabolic equations with variable coefficients and its consequences, Trans. Amer. Math. Soc. 308 (1988), 811-836. MR 951629 (89k:35104)
  • [GL2] -, Asymptotic behavior of fundamental solutions and potential theory of parabolic operators with variable coefficients, Math. Ann. 283 (1989), 211-240. MR 980595 (90i:35040)
  • [H] L. Hàrmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. MR 0222474 (36:5526)
  • [I] A. M. Il'in, On a class of ultraparabolic equations, Dokl. Akad. Nauk SSSR 159 (1964), 1214-1217. MR 0171084 (30:1315)
  • [JS] D. Jerison and A., Sanchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), 835-854. MR 865430 (88c:58064)
  • [K] A. Kolmogorov, Zufällige Bewegungen, Ann. of Math. 35 (1934), 116-117. MR 1503147
  • [Ku] L. P. Kupcov, Mean value theorem and a maximum principle for Kolmogorov's equation, Math. Notes 15 (1974), 280-286. MR 0352698 (50:5185)
  • [KS1] S. Kusuoka and D. W. Stroock, Applications of Malliavin calculus. III, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 34 (1987), 391-442. MR 914028 (89c:60093)
  • [KS2] -, Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator, Ann. of Math. (2) 127 (1988), 165-189. MR 924675 (89b:35022)
  • [N] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954. MR 0100158 (20:6592)
  • [S] A. Sanchez-Calle, Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math. 78 (1984), 143-160. MR 762360 (86e:58078)
  • [SV] D. W. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes, Springer-Verlag, Berlin, Heidelberg, New York, 1979. MR 532498 (81f:60108)
  • [W.] M. Weber, The fundamental solution of a degenerate partial differential equation of parabolic type, Trans. Amer. Math. Soc. 71 (1951), 24-37. MR 0042035 (13:41e)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K65, 35A30, 35B05

Retrieve articles in all journals with MSC: 35K65, 35A30, 35B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0998126-5
Article copyright: © Copyright 1990 American Mathematical Society

American Mathematical Society