Level sets of the fundamental solution and Harnack inequality for degenerate equations of Kolmogorov type

Authors:
Nicola Garofalo and Ermanno Lanconelli

Journal:
Trans. Amer. Math. Soc. **321** (1990), 775-792

MSC:
Primary 35K65; Secondary 35A30, 35B05

DOI:
https://doi.org/10.1090/S0002-9947-1990-0998126-5

MathSciNet review:
998126

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we establish a uniform Harnack inequality for a class of degenerate equations whose prototype is Kolmogorov's equations in . Our approach is based on mean value formulas for solutions of the equation under consideration on the level sets of the fundamental solution.

**[C]**C. Chandrasekhar,*Stochastic problems in physics and astronomy*, Rev. Modern Phys.**15**(1943), 1-89. MR**0008130 (4:248i)****[FS]**E. Fabes and D. W. Stroock,*A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash*, Arch. Rational Mech. Anal.**96**(1986), 327-338. MR**855753 (88b:35037)****[GL1]**N. Garofalo and E. Lanconelli,*Wiener's criterion for parabolic equations with variable coefficients and its consequences*, Trans. Amer. Math. Soc.**308**(1988), 811-836. MR**951629 (89k:35104)****[GL2]**-,*Asymptotic behavior of fundamental solutions and potential theory of parabolic operators with variable coefficients*, Math. Ann.**283**(1989), 211-240. MR**980595 (90i:35040)****[H]**L. Hàrmander,*Hypoelliptic second order differential equations*, Acta Math.**119**(1967), 147-171. MR**0222474 (36:5526)****[I]**A. M. Il'in,*On a class of ultraparabolic equations*, Dokl. Akad. Nauk SSSR**159**(1964), 1214-1217. MR**0171084 (30:1315)****[JS]**D. Jerison and A., Sanchez-Calle,*Estimates for the heat kernel for a sum of squares of vector fields*, Indiana Univ. Math. J.**35**(1986), 835-854. MR**865430 (88c:58064)****[K]**A. Kolmogorov,*Zufällige Bewegungen*, Ann. of Math.**35**(1934), 116-117. MR**1503147****[Ku]**L. P. Kupcov,*Mean value theorem and a maximum principle for Kolmogorov's equation*, Math. Notes**15**(1974), 280-286. MR**0352698 (50:5185)****[KS1]**S. Kusuoka and D. W. Stroock,*Applications of Malliavin calculus*. III, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**34**(1987), 391-442. MR**914028 (89c:60093)****[KS2]**-,*Long time estimates for the heat kernel associated with a uniformly subelliptic symmetric second order operator*, Ann. of Math. (2)**127**(1988), 165-189. MR**924675 (89b:35022)****[N]**J. Nash,*Continuity of solutions of parabolic and elliptic equations*, Amer. J. Math.**80**(1958), 931-954. MR**0100158 (20:6592)****[S]**A. Sanchez-Calle,*Fundamental solutions and geometry of the sum of squares of vector fields*, Invent. Math.**78**(1984), 143-160. MR**762360 (86e:58078)****[SV]**D. W. Stroock and S. R. S. Varadhan,*Multidimensional diffusion processes*, Springer-Verlag, Berlin, Heidelberg, New York, 1979. MR**532498 (81f:60108)****[W.]**M. Weber,*The fundamental solution of a degenerate partial differential equation of parabolic type*, Trans. Amer. Math. Soc.**71**(1951), 24-37. MR**0042035 (13:41e)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35K65,
35A30,
35B05

Retrieve articles in all journals with MSC: 35K65, 35A30, 35B05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1990-0998126-5

Article copyright:
© Copyright 1990
American Mathematical Society