Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Multipliers, linear functionals and the Fréchet envelope of the Smirnov class $ N\sb *({\bf U}\sp n)$


Author: Marek Nawrocki
Journal: Trans. Amer. Math. Soc. 322 (1990), 493-506
MSC: Primary 46E10; Secondary 32A35
MathSciNet review: 974523
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Linear topological properties of the Smirnov class $ {N_{\ast}}({\mathbb{U}^n})$ of the unit polydisk $ {\mathbb{U}^n}$ in $ {\mathbb{C}^n}$ are studied. All multipliers of $ {N_{\ast}}({\mathbb{U}^n})$ into the Hardy spaces $ {H_p}({\mathbb{U}^n}),\;0 < p \leqslant \infty $, are described. A representation of the continuous linear functionals on $ {N_{\ast}}({\mathbb{U}^n})$ is obtained. The Fréchet envelope of $ {N_{\ast}}({\mathbb{U}^n})$ is constructed. It is proved that if $ n > 1$, then $ {N_{\ast}}({\mathbb{U}^n})$ is not isomorphic to $ {N_{\ast}}(\mathbb{U}{^1})$.


References [Enhancements On Off] (What's this?)

  • [1] A. B. Aleksandrov, Essay on non locally convex Hardy classes, Lecture Notes in Math., Springer, vol. 864, 1981, pp. 1-89. MR 643380 (84h:46066)
  • [2] R. P. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in $ {L_p}$, Astérisque 77 (1980), 11-66.
  • [3] L. Drewnowski, Topological vector groups and the Nevanlinna class, preprint. MR 1304356 (96f:46004)
  • [4] E. Dubinsky, Basic sequences in stable finite type power series spaces, Studia Math. 68 (1980), 117-130. MR 599141 (82g:46006)
  • [5] P. L. Duren, Theory of $ {H^p}$-spaces, Academic Press, New York, 1970. MR 0268655 (42:3552)
  • [6] A. P. Frazier, The dual space of $ {H^p}$ of the polydisc for $ 0 < p < 1$, Duke Math. J. 39 (1972), 369-373. MR 0293119 (45:2198)
  • [7] K. T. Hahn, Properties of holomorphic functions of bounded characteristic on star-shaped circular domains, J. Reine Angew. Math. 254 (1972), 33-40. MR 0361171 (50:13617)
  • [8] M. Nawrocki, Linear functionals on the Smirnov class of the unit ball in $ {\mathbb{C}^n}$, Ann. Acad. Sci. Fenn. Ser. A (to appear).
  • [9] I. I. Privalov, Boundary properties of analytic functions, GITTL, Moscow, 1950 (Russian). MR 0047765 (13:926h)
  • [10] S. Rolewicz, Metric linear spaces, PWN, Warsaw; Reidel, Dordrecht and Boston, Mass., 1984. MR 802450 (88i:46004a)
  • [11] W. Rudin, Function theory in polydiscs, Benjamin, New York, 1969. MR 0255841 (41:501)
  • [12] H. H. Schaefer, Topological vector spaces, Springer-Verlag, New York, 1971. MR 0342978 (49:7722)
  • [13] J. H. Shapiro, Mackey topologies, reproducing kernels, and diagonal maps on Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187-202. MR 0500100 (58:17806)
  • [14] M. Stoll, The space $ {N_{\ast}}$ of holomorphic functions on bounded symmetric domains, Ann. Polon. Math. 32 (1976), 95-110. MR 0417438 (54:5488)
  • [15] -, Mean growth and Fourier coefficients of some classes of holomorphic functions on bounded symmetric domains, Ann. Polon. Math. 45 (1985), 161-183. MR 802292 (87a:32029)
  • [16] N. Yanagihara, The containing Fréchet space for the class $ {N^ + }$, Duke Math. J. 40 (1973), 93-103. MR 0344860 (49:9599)
  • [17] -, Multipliers and linear functionals for the class $ {N^ + }$, Trans. Amer. Math. Soc. 180 (1973), 449-461. MR 0338382 (49:3147)
  • [18] -, Mean growth and Taylor coefficients of some classes of functions, Ann. Polon. Math. 30 (1974), 37-48. MR 0338383 (49:3148)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E10, 32A35

Retrieve articles in all journals with MSC: 46E10, 32A35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1990-0974523-9
Keywords: Smirnov class, multipliers, Fréchet envelopes, linear functionals, nuclear spaces
Article copyright: © Copyright 1990 American Mathematical Society