Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Minimal submanifolds of $ E\sp {2n+1}$ arising from degenerate $ {\rm SO} (3)$ orbits on the Grassmannian


Author: J. M. Landsberg
Journal: Trans. Amer. Math. Soc. 325 (1991), 101-117
MSC: Primary 53C42; Secondary 58E20
DOI: https://doi.org/10.1090/S0002-9947-1991-1012515-5
MathSciNet review: 1012515
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give new examples of minimal submanifolds of $ {{\mathbf{E}}^{2n + 1}}$ characterised by having their Gauss map's image lie in degenerate $ SO(3)$ orbits of $ {G_{p,2n + 1}}$, the Grassmannian of $ p$-planes in $ {{\mathbf{E}}^{2n + 1}}$ (where the action on $ {G_{p,2n + 1}}$ is induced from the irreducible $ SO(3)$ action on $ {{\mathbf{R}}^{2n + 1}}$). These submanifolds are all given explicitly in terms of holomorphic data and are linearly full in $ {{\mathbf{E}}^{2n + 1}}$.


References [Enhancements On Off] (What's this?)

  • [B1] R. L. Bryant, Conformal and minimal immersions of compact surfaces into the $ 4$-sphere, J. Differential Geom. 17 (1982), 455-473. MR 679067 (84a:53062)
  • [B2] -, Metrics with exceptional holonomy, Ann. of Math. 126 (1987), 525-576. MR 916718 (89b:53084)
  • [BCG$ ^{3}$] R. L. Bryant, S. Chern, R. Gardner, Goldschmidt, and P. Griffiths, Exterior differential systems, Springer, 1990.
  • [HaL] R. Harvey and H. B. Lawson, Calibrated geometrics, Acta Math. 148 (1982), 47-157. MR 666108 (85i:53058)
  • [HM] R. Harvey and F. Morgan, The faces of the Grassmannian of three-planes in $ {{\mathbf{R}}^7}$, Invent Math. 83 (1986), 191-228. MR 818350 (87c:53128)
  • [HsL] W. Y. Hsiang and H. B. Lawson, Minimal submanifolds of low cohomogeneity, J. Differential Geom. 5 (1971), 1-38. MR 0298593 (45:7645)
  • [L] J. M. Landsberg, Minimal submanifolds defined by first order systems of $ PDE$, preprint available.
  • [M] T. Murdoch, Twisted calibrations and the cone over the Veronese, PhD thesis, Rice University, Houston, Texas, 1988.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C42, 58E20

Retrieve articles in all journals with MSC: 53C42, 58E20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1991-1012515-5
Keywords: Minimal submanifolds, calibrations
Article copyright: © Copyright 1991 American Mathematical Society

American Mathematical Society