Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Prinjective modules, reflection functors, quadratic forms, and Auslander-Reiten sequences


Authors: J. A. de la Peña and D. Simson
Journal: Trans. Amer. Math. Soc. 329 (1992), 733-753
MSC: Primary 16D90; Secondary 16D20, 16G70, 16P20
DOI: https://doi.org/10.1090/S0002-9947-1992-1025753-3
MathSciNet review: 1025753
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A,\;B$ be artinian rings and let $ _A{M_B}$ be an $ (A - B)$-bimodule which is a finitely generated left $ A$-module and a finitely generated right $ B$-module. A right $ _A{M_B}$-prinjective module is a finitely generated module $ {X_R} = (X_A', X_B'', \varphi :X_A' \otimes_A M_B \to X''_B)$ over the triangular matrix ring

$\displaystyle R = \left( {\begin{array}{*{20}{c}} A & {_A{M_B}} \\ 0 & B \\ \end{array} } \right)$

such that $ X_A'$ is a projective $ A$-module, $ X''_B$ is an injective $ B$-module, and $ \varphi $ is a $ B$-homomorphism.

We study the category $ \operatorname{prin} (R)_B^A$ of right $ _A{M_B}$-prinjective modules. It is an additive Krull-Schmidt subcategory of $ \bmod (R)$ closed under extensions. For every $ X,\;Y$ in $ \operatorname{prin} (R)_B^A,\;\operatorname{Ext} _R^2(X,\,Y) = 0$. When $ R$ is an Artin algebra, the category $ \operatorname{prin} (R)_B^A$ has Auslander-Reiten sequences and they can be computed in terms of reflection functors. In the case that $ R$ is an algebra over an algebraically closed field we give conditions for $ \operatorname{prin} (R)_B^A$ to be representation-finite or representation-tame in terms of a Tits form. In some cases we calculate the coordinates of the Auslander-Reiten translation of a module using a Coxeter linear transformation.


References [Enhancements On Off] (What's this?)

  • [1] M. Auslander, Functors and morphisms determined by objects, Proc. Conf. on Representation Theory (Philadelphia, 1976), Dekker, 1978, pp. 245-327. MR 0480688 (58:844)
  • [2] M. Auslander and S. O. Smalø, Almost split sequences in subcategories, J. Algebra 69 (1981), 426-454. MR 617088 (82j:16048a)
  • [3] R. Bautista and F. Larrión, Auslander-Reiten quivers for certain algebras of finite representation type, J. London Math. Soc. 26 (182), 43-52. MR 667243 (83k:16014)
  • [4] R. Bautista and R. Martínez, Representations of partially ordered sets and $ 1$-Gorenstein artin algebras, Proc. Conf. on Ring Theory (Antwerp, 1978), Dekker, 1979, pp. 385-433.
  • [5] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 (1980), 461-469. MR 724715 (85i:16036)
  • [6] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Mem. Amer. Math. Soc. No. 173 (1976). MR 0447344 (56:5657)
  • [7] J. Drozd, Matrix problems and categories of matrices. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 28 (1972), 144-153. (Russian) MR 0340282 (49:5037)
  • [8] -, Coxeter transformations and representations of partially ordered sets, Funktsional. Anal, i Prilozhen. 8 (1974) 34-42; English transl., Functional Anal. Appl. 8 (1974), 218-225. MR 0351924 (50:4412)
  • [9] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Representation Theory. I, Lecture Notes in Math., vol. 831, Springer, 1980, pp. 1-71. MR 607140 (82i:16030)
  • [10] R. Grecht, Kategorien von Moduln mit Untermoduln, Diplomarbeit, Zürich, 1986.
  • [11] D. Happel and C. M. Ringel, Tilted algebras, Trans. Amer. Math. Soc. 274 (1982), 399-443. MR 675063 (84d:16027)
  • [12] H. J. von Höhne, Ganze quadratische Formen und Algebren, Dissertation, Berlin, 1986.
  • [13] -, On weakly unit forms, Comment. Math. Helv. 63 (1988), 312-336. MR 948786 (89g:15033)
  • [14] B. Klemp and D. Simson, Schurian sp-representation-finite right peak $ PI$-rings and their socle projective modules, J. Algebra 134 (1990), 390-468. MR 1074337 (91j:16011)
  • [15] J. A. de la Peña, On the representation type of one point extension of tame concealed algebras, Manuscripta Math. 61 (1988), 183-194. MR 943535 (89h:16022)
  • [16] C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Math., vol. 1099, Springer, 1984. MR 774589 (87f:16027)
  • [17] D. Simson, Vector space categories, right peak rings and their socle projective modules, J. Algebra 92 (1985), 532-571. MR 778466 (87e:16077)
  • [18] -, Representations of partially ordered sets, vector space categories and socle projective modules, Paderborn, July 1983, pp. 1-141.
  • [19] -, Moduled categories and adjusted modules over traced rings, Dissertationes Math. 269 (1990). MR 1065899 (91j:16005)
  • [20] -, Artinian piecewise peak $ PI$-rings of finite adjusted module type, (Torun, 1987), Preprint.
  • [21] D. Vossieck, Representation de bifoncteurs et interpretation en termes de modules, C.R. Acad. Sci. Paris Ser. I 307 (1988), 713-716. MR 972818 (89k:16055)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16D90, 16D20, 16G70, 16P20

Retrieve articles in all journals with MSC: 16D90, 16D20, 16G70, 16P20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1025753-3
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society