Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ 3$-manifold groups with the finitely generated intersection property


Author: Teruhiko Soma
Journal: Trans. Amer. Math. Soc. 331 (1992), 761-769
MSC: Primary 57M05; Secondary 30F40, 57N10
DOI: https://doi.org/10.1090/S0002-9947-1992-1042289-4
MathSciNet review: 1042289
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, first we consider whether the fundamental groups of certain geometric $ 3$-manifolds have FGIP or not. Next we give the sufficient conditions that FGIP for $ 3$-manifold groups is preserved under torus sums or annulus sums and connect this result with a conjecture by Hempel $ [4]$.


References [Enhancements On Off] (What's this?)

  • [1] B. Baumslag, Intersections of finitely generated subgroups in free products, J. London Math. Soc. 41 (1966), 673-679. MR 0199247 (33:7396)
  • [2] L. Greenberg, Discrete groups of motions, Canad. J. Math. 12 (1960), 415-426. MR 0115130 (22:5932)
  • [3] J. Hempel, $ 3$-manifolds, Ann. of Math. Studies, no. 86, Princeton Univ. Press, Princeton, N.J., 1976. MR 0415619 (54:3702)
  • [4] -, The finitely generated intersection property for Kleinian groups, Knot Theory and Manifolds (D. Rolfsen, ed.), Lecture Notes in Math., vol. 1144, Springer, Berlin, 1985, pp. 18-24. MR 823280 (88j:20049)
  • [5] W. Jaco, Lectures on three-manifold topology, CBMS Regional Conf. Ser. in Math., no. 43, Amer. Math. Soc., Providence, R.I., 1980. MR 565450 (81k:57009)
  • [6] O. Kakimizu, Intersections of finitely generated subgroups in a $ 3$-manifold group, Preprint, Hiroshima Univ., 1988.
  • [7] J. Morgan, On Thurston's uniformization theorem for three-dimensional manifolds, The Smith Conjecture (J. Morgan and H. Bass, eds.), Academic Press, New York, 1984, pp. 37-125. MR 758464
  • [8] G. P. Scott, Finitely generated $ 3$-manifold groups are finitely presented, J. London Math. Soc. 6 (1973), 437-440. MR 0380763 (52:1660)
  • [9] -, Compact submanifolds of $ 3$-manifolds, J. London Math. Soc. 7 (1973), 246-250. MR 0326737 (48:5080)
  • [10] -, The geometries of $ 3$-manifolds, Bull. London Math. Soc. 15 (1983), 401-487. MR 705527 (84m:57009)
  • [11] J.-P. Serre, Trees, Springer, Berlin, 1980. MR 607504 (82c:20083)
  • [12] W. Thurston, Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. 6 (1982), 357-381. MR 648524 (83h:57019)
  • [13] -, The geometry and topology of $ 3$-manifolds, Mimeographed Notes, Princeton Univ., Princeton, N.J., 1978.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M05, 30F40, 57N10

Retrieve articles in all journals with MSC: 57M05, 30F40, 57N10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1042289-4
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society