-manifold groups with the finitely generated intersection property

Author:
Teruhiko Soma

Journal:
Trans. Amer. Math. Soc. **331** (1992), 761-769

MSC:
Primary 57M05; Secondary 30F40, 57N10

MathSciNet review:
1042289

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, first we consider whether the fundamental groups of certain geometric -manifolds have FGIP or not. Next we give the sufficient conditions that FGIP for -manifold groups is preserved under torus sums or annulus sums and connect this result with a conjecture by Hempel .

**[1]**Benjamin Baumslag,*Intersections of finitely generated subgroups in free products*, J. London Math. Soc.**41**(1966), 673–679. MR**0199247****[2]**Leon Greenberg,*Discrete groups of motions*, Canad. J. Math.**12**(1960), 415–426. MR**0115130****[3]**John Hempel,*3-Manifolds*, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR**0415619****[4]**John Hempel,*The finitely generated intersection property for Kleinian groups*, Knot theory and manifolds (Vancouver, B.C., 1983) Lecture Notes in Math., vol. 1144, Springer, Berlin, 1985, pp. 18–24. MR**823280**, 10.1007/BFb0075010**[5]**William Jaco,*Lectures on three-manifold topology*, CBMS Regional Conference Series in Mathematics, vol. 43, American Mathematical Society, Providence, R.I., 1980. MR**565450****[6]**O. Kakimizu,*Intersections of finitely generated subgroups in a*-*manifold group*, Preprint, Hiroshima Univ., 1988.**[7]**John W. Morgan,*On Thurston’s uniformization theorem for three-dimensional manifolds*, The Smith conjecture (New York, 1979) Pure Appl. Math., vol. 112, Academic Press, Orlando, FL, 1984, pp. 37–125. MR**758464**, 10.1016/S0079-8169(08)61637-2**[8]**G. P. Scott,*Finitely generated 3-manifold groups are finitely presented*, J. London Math. Soc. (2)**6**(1973), 437–440. MR**0380763****[9]**G. P. Scott,*Compact submanifolds of 3-manifolds*, J. London Math. Soc. (2)**7**(1973), 246–250. MR**0326737****[10]**Peter Scott,*The geometries of 3-manifolds*, Bull. London Math. Soc.**15**(1983), no. 5, 401–487. MR**705527**, 10.1112/blms/15.5.401**[11]**Jean-Pierre Serre,*Trees*, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR**607504****[12]**William P. Thurston,*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, 10.1090/S0273-0979-1982-15003-0**[13]**-,*The geometry and topology of*-*manifolds*, Mimeographed Notes, Princeton Univ., Princeton, N.J., 1978.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57M05,
30F40,
57N10

Retrieve articles in all journals with MSC: 57M05, 30F40, 57N10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1992-1042289-4

Article copyright:
© Copyright 1992
American Mathematical Society