Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A bounded mountain pass lemma without the (PS) condition and applications


Author: Martin Schechter
Journal: Trans. Amer. Math. Soc. 331 (1992), 681-703
MSC: Primary 58E05; Secondary 35J60, 47H99, 49J52, 58E50
DOI: https://doi.org/10.1090/S0002-9947-1992-1064270-1
MathSciNet review: 1064270
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present a version of the mountain pass lemma which does not require the ( $ \mathbf{PS}$) condition. We apply this version to problems where the ( $ \mathbf{PS}$) condition is not satisfied.


References [Enhancements On Off] (What's this?)

  • [1] J. T. Schwartz, Generalizing the Lusternik-Schnirelmann theory of critical points, Comm. Pure Appl. Math. 17 (1964), 307-315. MR 0166796 (29:4069)
  • [2] R. S. Palais, Lusternik-Schnirelmann theory on Banach manifolds, Topology 5 (1966), 115-132. MR 0259955 (41:4584)
  • [3] -, Critical point theory and the minimax principle, Proc. Sympos. Pure Math., vol. 15, Amer. Math. Soc., Providence, R. I., 1970, pp. 185-212. MR 0264712 (41:9303)
  • [4] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. MR 0370183 (51:6412)
  • [5] D. C. Clark, A variant of the Lusternik-Schnirelmann theory, Indiana Univ. Math. J. 22 (1972), 65-74. MR 0296777 (45:5836)
  • [6] L. Nirenberg, Variational and topological methods in nonlinear problems, Bull. Amer. Math. Soc. 4 (1981), 267-302. MR 609039 (83e:58015)
  • [7] P. Bartolo, V. Benci, and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with "strong" resonance at infinity, Nonlinear Anal. Theory Methods Appl. 7 (1983), 981-1012. MR 713209 (85c:58028)
  • [8] P. H. Rabinowitz, Some minimax theorems and applications to nonlinear partial differential equations, Nonlinear Analysis (L. Cesari, R. Kannan, H. Weinberger, eds.), Academic Press, New York, 1978, pp. 161-177. MR 0501092 (58:18545)
  • [9] G. Cerami, Un criterio di esistenza per i punti critici su varieta ellimitate, Rend. Istit. Lombardo Accad. Sci. Lett. 112 (1978), 332-336.
  • [10] K. Thews, Nontrivial solutions of elliptic equations at resonance, Proc. Roy. Soc. Edinburgh 85A (1980), 119-129. MR 566069 (81c:35054)
  • [11] S. Ahmed, C. Lazer, and J. L. Paul, Elementary critical point theory and perturbations of elliptic boundary value problems at resonance, Indiana Univ. Math. J. 25 (1976), 933-944. MR 0427825 (55:855)
  • [12] E. A. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623. MR 0267269 (42:2171)
  • [13] M. S. Berger and M. Schechter, On the solvability of semilinear gradient operator equations, Adv. in Math. 25 (1977), 97-132. MR 0500336 (58:17997)
  • [14] D. G. De Figueiredo, Some remarks on the Dirichlet problem for elliptic equations, Trab. Mathematica (Univ. de Brasilia) No. 57 (1974).
  • [15] R. E. Gaines and J. L. Mawhin, Coincidence degree and nonlinear differential equations, (A. Dold and B. Eckmann, eds.), Lecture Notes in Math., vol. 568, Springer-Verlag, Berlin and New York, 1977. MR 0637067 (58:30551)
  • [16] E. Tarafdar, An approach to nonlinear elliptic boundary value problems, J. Austral. Math. Soc. 34 (1983), 316-335. MR 695916 (85h:35095)
  • [17] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., no. 65, Amer. Math. Soc., Providence, R. I., 1986. MR 845785 (87j:58024)
  • [18] M. Schechter, The Hampwile theorem for nonlinear eigenvalues, Duke Math. J. 59 (1989), 325-335. MR 1016892 (90j:47080)
  • [19] D. G. De Figueiredo, Positive solutions for some classes of semilinear elliptic problems, Proc. Sympos. Pure Math., vol. 45, Amer. Math. Soc., Providence, R. I., 1986, pp. 371-379. MR 843573 (87j:35141)
  • [20] P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985), 142-149. MR 808262 (86m:58038)
  • [21] Nguyen Phuong Cac, On an elliptic boundary value problem at double resonance, J. Math. Anal. Appl. 132 (1988), 473-483. MR 943520 (90a:35093)
  • [22] S. Ahmad, Multiple nontrivial solutions of resonant and nonresonant asymptotically linear problems, Proc. Amer. Math. Soc. 96 (1986), 405-409. MR 822429 (87m:35090)
  • [23] A. C. Lazer and P. J. McKenna, Multiplicity results for a semilinear boundary value problem with the nonlinearity crossing higher eigenvalues, Nonlinear Analysis Theory Methods Appl. 9 (1985), 335-349. MR 783582 (86m:35064)
  • [24] -, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues I, Comm. Partial Differential Equations 10 (1985), 107-150; II, Comm. Partial Differential Equations 11 (1986), 1653-1676. MR 777047 (86f:35025)
  • [25] S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 143-156. MR 794004 (86g:35079)
  • [26] A. Bahri and P. L. Lions, Remarks on variational critical point theory and applications, C. R. Acad. Sci. Paris 301 (1985), 145-147. MR 801948 (86j:58021)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E05, 35J60, 47H99, 49J52, 58E50

Retrieve articles in all journals with MSC: 58E05, 35J60, 47H99, 49J52, 58E50


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1992-1064270-1
Article copyright: © Copyright 1992 American Mathematical Society

American Mathematical Society