Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the Brauer group of toric varieties


Authors: Frank R. DeMeyer and Timothy J. Ford
Journal: Trans. Amer. Math. Soc. 335 (1993), 559-577
MSC: Primary 14M25; Secondary 13A20, 14F20, 16H05
DOI: https://doi.org/10.1090/S0002-9947-1993-1085941-8
MathSciNet review: 1085941
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the cohomological Brauer group of a normal toric variety whose singular locus has codimension less than or equal to $ 2$ everywhere.


References [Enhancements On Off] (What's this?)

  • [1] N. Biggs, Algebraic graph theory, Cambridge Univ. Press, London, 1974. MR 0347649 (50:151)
  • [2] E. Brieskorn, Rational Singularitäten komplexer Flächen, Invent. Math. 4 (1968), 336-358. MR 0222084 (36:5136)
  • [3] T. Ford, On the Brauer group of $ k[{x_1}, \ldots ,{x_n},1/f]$, J. Algebra 122 (1989), 410-424. MR 999083 (90d:13005)
  • [4] -, On the Brauer group of a localization, J. Algebra 147 (1992), 365-378. MR 1161299 (93c:13004)
  • [5] R. Fossum, The divisor class group of a Krull domain, Springer-Verlag, New York, 1973. MR 0382254 (52:3139)
  • [6] J. Gamst and K. Hoechsmann, Quaternions generalises, C. R. Acad. Sci. Paris 269A (1969), 560-562. MR 0252425 (40:5645)
  • [7] A Grothendieck, Le groupe de Brauer. II, Dix Exposés sur la Cohomologie des Schémas, North-Holland, Amsterdam, 1968.
  • [8] R. Hoobler, Functors of graded rings, Methods in Ring Theory (F. van Oystaeyen, ed.), NATO ASI Series, Reidel, Dordrecht, 1984, pp. 161-170. MR 770588 (86f:16008)
  • [9] -, When is $ \operatorname{Br}(X) = \operatorname{Br}\prime (X)?$, Brauer Groups in Ring Theory and Algebraic Geometry, Lecture Notes in Math., Vol. 917, Springer-Verlag, New York/Berlin, 1982, pp. 231-245.
  • [10] A Magid, Brauer groups of linear algebraic groups with characters, Proc. Amer. Math. Soc. 71 (1978), 164-168. MR 0485816 (58:5619)
  • [11] J. Milne, Etale cohomology, Princeton Univ. Press, Princeton, N. J., 1980. MR 559531 (81j:14002)
  • [12] T. Oda, Convex bodies and algebraic geometry, Springer-Verlag, Berlin and Heidelberg, 1988. MR 922894 (88m:14038)
  • [13] M. Raynaud, Anneaux locaux Henséliens, Lecture Notes in Math., Vol. 169, Springer-Verlag, Berlin, 1970. MR 0277519 (43:3252)
  • [14] O. F. G. Schilling, The theory of valuations, Math. Surveys, No. 4, Amer. Math. Soc., Providence, R. I., 1950. MR 0043776 (13:315b)
  • [15] R. Strano, On the étale cohomology of Hensel rings, Comm. Algebra 12 (1984), 2195-2211. MR 747223 (86g:14009)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14M25, 13A20, 14F20, 16H05

Retrieve articles in all journals with MSC: 14M25, 13A20, 14F20, 16H05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1085941-8
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society