Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On transformation group $ C\sp *$-algebras with continuous trace


Author: Siegfried Echterhoff
Journal: Trans. Amer. Math. Soc. 343 (1994), 117-133
MSC: Primary 46L55; Secondary 22D25, 54H20
DOI: https://doi.org/10.1090/S0002-9947-1994-1157612-1
MathSciNet review: 1157612
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we answer some questions posed by Dana Williams in [19] concerning the problem under which conditions the transformation group $ {C^ \ast }$-algebra $ {C^\ast}(G,\Omega )$ of a locally compact transformation group (G, $ \Omega $) has continuous trace. One consequence will be, for compact G, that $ {C^\ast}(G,\Omega )$ has continuous trace if and only if the stabilizer map is continuous. We also give a complete solution to the problem if G is discrete.


References [Enhancements On Off] (What's this?)

  • [1] L. W. Baggett, A description of the topology on the dual spaces of certain locally compact groups, Trans. Amer. Math. Soc. 132 (1968), 175-215. MR 0409720 (53:13472)
  • [2] L. Baggett and T. Sund, The Hausdorff dual problem for connected groups, J. Funct. Anal. 43 (1981), 60-68. MR 639797 (83a:22006)
  • [3] J. Dixmier, $ {C^\ast}$-algebras, North-Holland Math. Library, 1977. MR 0458185 (56:16388)
  • [4] S. Echterhoff, The primitive ideal space of twisted covariant systems with continuously varying stabilizers, Math. Ann. 292 (1992), 59-84. MR 1141785 (93a:46128)
  • [5] -, Regularizations of twisted covariant systems and crossed products with continuous trace, J. Funct. Anal. 116 (1993), 277-313. MR 1239073 (95c:46112)
  • [6] S. Echterhoff and E. Kaniuth, Certain group extensions and twisted covariance algebras with generalized continuous trace, Lecture Notes in Math., Berlin, Heidelberg, and New York, 1987, pp. 159-169. MR 974312 (90c:46083)
  • [7] J. M. G. Fell, A Hausdorff topology on the closed subsets of a locally compact non-Hausdorff space, Proc. Amer. Math. Soc. 13 (1962) 472-476. MR 0139135 (25:2573)
  • [8] -, The structure of algebras of operator fields, Acta Math. 106 (1962) 237-268. MR 0164248 (29:1547)
  • [9] -, Weak containment and induced representations of groups. II, Trans. Amer. Math. Soc. 110 (1964), 424-447. MR 0159898 (28:3114)
  • [10] J. Glimm, Families of induced representations, Pacific J. Math. 12 (1962) 885-911. MR 0146297 (26:3819)
  • [11] F. P. Greenleaf, Amenable actions of locally compact groups, J. Funct. Anal. 4 (1969), 295-315. MR 0246999 (40:268)
  • [12] R. W. Henrichs, Die Frobeniuseigenschaft für diskrete Gruppen, Math. Z. 147 (1976,) 191-199. MR 0404522 (53:8324)
  • [13] E. Kaniuth, Primitive ideal spaces of groups with relative compact conjugacy classes, Arch. Math. 32 (1979), 16-24. MR 532844 (81f:22009)
  • [14] -, On topological Frobenius reciprocity for locally compact groups, Arch. Math. 48 (1987), 286-297. MR 884559 (89d:22002)
  • [15] D. Montgomery and L. Zippin, Topological transformation groups, Interscience, New York, 1955. MR 0073104 (17:383b)
  • [16] I. Raeburn and D. P. Williams, Crossed products by actions which are locally unitary on the stabilizers, J. Funct. Anal. 81 (1988), 385-431. MR 971886 (91c:46093)
  • [17] E. Thoma, Eine Charakterisierung diskreter Gruppen vom Typ I, Invent. Math. 6 (1968), 190-196. MR 0248288 (40:1540)
  • [18] D. P. Williams, The topology on the primitive ideal space of transformation group $ {C^\ast}$-algebras and C.C.R transformation group $ {C^\ast}$-algebras, Trans. Amer. Math. Soc. 266 (1981), 335-359. MR 617538 (82h:46081)
  • [19] -, Transformation group $ {C^\ast}$-algebras with continuous trace, J. Funct. Anal. 41 (1981), 40-76. MR 614226 (83c:46066)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L55, 22D25, 54H20

Retrieve articles in all journals with MSC: 46L55, 22D25, 54H20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1157612-1
Keywords: $ {C^\ast}$-algebra, transformation group, continuous trace, subgroup algebra
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society