Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Stability theory for parametric generalized equations and variational inequalities via nonsmooth analysis


Author: Boris Mordukhovich
Journal: Trans. Amer. Math. Soc. 343 (1994), 609-657
MSC: Primary 49J52; Secondary 49K40, 90C31
DOI: https://doi.org/10.1090/S0002-9947-1994-1242786-4
MathSciNet review: 1242786
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we develop a stability theory for broad classes of parametric generalized equations and variational inequalities in finite dimensions. These objects have a wide range of applications in optimization, nonlinear analysis, mathematical economics, etc. Our main concern is Lipschitzian stability of multivalued solution maps depending on parameters. We employ a new approach of nonsmooth analysis based on the generalized differentiation of multivalued and nonsmooth operators. This approach allows us to obtain effective sufficient conditions as well as necessary and sufficient conditions for a natural Lipschitzian behavior of solution maps. In particular, we prove new criteria for the existence of Lipschitzian multivalued and single-valued implicit functions.


References [Enhancements On Off] (What's this?)

  • [1] J.-P. Aubin, Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res. 9 (1984), 87-111. MR 736641 (86f:90119)
  • [2] J.-P. Aubin and H. Frankowska, Set-valued analysis, Birkhäuser, Boston, MA, 1990. MR 1048347 (91d:49001)
  • [3] J. M. Borwein and D. M. Zhuang, Verifiable necessary and sufficient conditions for regularity of set-valued and single-valued maps, J. Math. Anal. Appl. 134 (1988), 441-459. MR 961349 (90h:90185)
  • [4] F. H. Clarke, Optimization and nonsmooth analysis, Wiley, New York, 1983. MR 709590 (85m:49002)
  • [5] M. G. Crandall and P.-L. Lions, Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc. 277 (1983), 1-42. MR 690039 (85g:35029)
  • [6] A. L. Dontchev and W. W. Hager, Implicit functions, Lipschitz maps, and stability in optimization, Math. Oper. Res. (to appear). MR 1288898 (95i:49042)
  • [7] M. S. Gowda and J.-S. Pang, Stability analysis of variational inequality and nonlinear complementarity problems, via the mixed linear complementarity problem and degree theory, Math. Oper. Res. (to appear).
  • [8] P. T. Harker and J.-S. Pang, Finite-dimensional variational inequality and nonlinear comlementarity problems: a survey of theory, algorithms and applications, Math. Programming 48 (1990), 161-220. MR 1073707 (91g:90166)
  • [9] A. D. Ioffe, Approximate subdifferentials and applications. I: The finite dimensional theory, Trans. Amer. Math. Soc. 281 (1984), 389-416. MR 719677 (84m:49029)
  • [10] A. J. King and R. T. Rockafellar, Sensitivity analysis for nonsmooth generalized equations, Math. Programming 55 (1992), 193-212. MR 1167597 (93d:90064)
  • [11] A. Kruger and B. Mordukhovich, Generalized normals and derivatives, and necessary conditions for extrema in nondifferentiable programming. I, Depon. VINITI No. 408-80 (1980, Russian).
  • [12] -, Extremal points and the Euler equation in nonsmooth optimization, Dokl. Akad. Nauk BSSR 24 (1980), 684-687. (Russian) MR 587714 (82b:90127)
  • [13] B. Kummer, An implicit function theorem for $ {C^{0,1}}$-equations and parametric $ {C^{1,1}}$ optimization, J. Math. Anal. Appl. 158 (1991), 35-46. MR 1113397 (92f:49006)
  • [14] -, Lipschitzian inverse functions, directional derivatives, and applications in $ {C^{1,1}}$ optimization, J. Optim. Theory Appl. 70 (1991), 561-582. MR 1124778 (92e:49023)
  • [15] J. Kyparisis, Parametric variational inequalities with multivalued solution sets, Math. Oper. Res. 17 (1992), 341-364. MR 1161159 (92m:49010)
  • [16] J. Liu, Nonsingular solutions of finite-dimensional variational inequalities: theory and methods, preprint, 1992.
  • [17] B. Mordukhovich, Maximum principle in the problem of time-optimal control with nonsmooth constraints, J. Appl. Math. Mech. 40 (1976), 960-969. MR 0487669 (58:7284)
  • [18] -, Metric approximations and necessary optimality conditions for general classes of nonsmooth extremal problems, Soviet Math. Dokl. 22 (1980), 526-530.
  • [19] -, Approximation methods in problems of optimization and control, Nauka, Moscow, 1988. (Russian; English transl. to appear in Wiley) MR 945143 (89m:49001)
  • [20] -, Sensitivity analysis in nonsmooth optimization, Theoretical Aspects of Industrial Design (D. A. Field and V. Komkov, eds.), SIAM Proc. Appl. Math., vol. 58, 1992, pp. 32-46. MR 1157413 (93a:49012)
  • [21] -, On variational analysis of differential inclusions, Optimization and Nonlinear Analysis (A. Ioffe, L. Marcus, and S. Reich, eds.), Pitman Res. Notes Math. Ser., 224, Pitman, 1992, pp. 199-213. MR 1184644
  • [22] -, Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc. 340 (1993), 1-36. MR 1156300 (94a:49011)
  • [23] -, Lipschitzian stability of constraint systems and generalized equations, Nonlinear Anal. 22 (1994). MR 1258955 (94m:49041)
  • [24] J.-S. Pang, A degree-theoretic approach to parametric nonsmooth equations with multivalued perturbed solutions sets, Math. Programming 62 (1993), 359-383. MR 1247621 (94i:90136)
  • [25] J.-P. Penot, Metric regularity, openness and Lipschitzian behavior of multifunctions, Nonlinear Anal. Theory Methods Appl. 13 (1989), 629-643. MR 998509 (90h:54024)
  • [26] Y. Qiu and T. L. Magnati, Sensitivity analysis for variational inequalities, Math. Oper. Res. 17 (1992), 61-76. MR 1148778 (92m:90043)
  • [27] S. M. Robinson, Stability theory for systems of inequalities. II: Differentiable nonlinear systems, SIAM J. Numer. Anal. 13 (1976), 497-513. MR 0410522 (53:14271)
  • [28] -, Generalized equations and their solutions, part I: basic theory, Math. Programming Stud. 10 (1979), 128-141.
  • [29] -, Strongly regular generalized equations, Math. Oper. Res. 5 (1980), 43-62. MR 561153 (81m:90109)
  • [30] -, Generalized equations, Math, programming: The State of Art (A. Bachem, M. Grötschel, and B. Korte, eds.), Springer-Verlag, Berlin and New York, 1982, pp. 346-367.
  • [31] -, An implicit-function theorem for a class of nonsmooth functions, Math. Oper. Res. 16 (1991), 292-309. MR 1106803 (92g:58013)
  • [32] R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, NJ, 1970. MR 0266020 (42:929)
  • [33] -, The theory of subgradients and its applications to optimization: convex and nonconvex functions, Heldermann, 1981. MR 623763 (83b:90126)
  • [34] -, Lipschitzian properties of multifunctions, Nonlinear Anal. Theory Methods Appl. 9 (1985), 867-885. MR 799890 (87a:90149)
  • [35] -, Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Inst. H. Poincaré. Anal. Non Linéaire 2 (1985), 167-184. MR 797269 (87c:49021)
  • [36] R.T. Rockafellar and R. J.-B. Wets, Variational analysis, Springer-Verlag (to appear). MR 1491362 (98m:49001)
  • [37] A. Shapiro, Sensitivity analysis of parametric programs via generalized equations, preprint, 1992.
  • [38] L. Thibault, Subdifferentials of compactly Lipschitzian functions, Ann. Math. Pura Appl. (4) 125 (1980), 157-192. MR 605208 (82h:58006)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 49J52, 49K40, 90C31

Retrieve articles in all journals with MSC: 49J52, 49K40, 90C31


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1242786-4
Keywords: Generalized equations, variational inequalities, stability and sensitivity, nonsmooth analysis, generalized differentiation
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society