Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Eigenvalues and eigenspaces for the twisted Dirac operator over $ {\rm SU}(N,1)$ and $ {\rm Spin}(2N,1)$

Authors: Esther Galina and Jorge Vargas
Journal: Trans. Amer. Math. Soc. 345 (1994), 97-113
MSC: Primary 22E30; Secondary 22E45, 58G10
MathSciNet review: 1189792
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let X be a symmetric space of noncompact type whose isometry group is either $ SU(n,1)$ or $ Spin(2n,1)$. Then the Dirac operator D is defined on $ {L^2}$-sections of certain homogeneous vector bundles over X. Using representation theory we obtain explicitly the eigenvalues of D and describe the eigenspaces in terms of the discrete series.

References [Enhancements On Off] (What's this?)

  • [A] M. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Asterisque 32-33 (1976). MR 0420729 (54:8741)
  • [A-S] M. Atiyah and W. Schmid, A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 42 (1977). MR 0463358 (57:3310)
  • [C-M] A. Connes and H. Moscovici, The $ {L^2}$-index theorem for homogeneous spaces of Lie groups, Ann. of Math. (2) 115 (1982). MR 647808 (84f:58108)
  • [S] W. Schmid, Die Randwerte holomorpher Funktionen auf hermitsch symmetrichen Raumen, Invent. Math. 9 (1969-1970). MR 0259164 (41:3806)
  • [W] J. A. Wolf, Essential self adjointness for the Dirac operator and its square, Indiana Univ. Math. J. 22 (1973). MR 0311248 (46:10340)
  • [Wa] N. R. Wallach, Harmonic analysis on homogeneous spaces, Dekker, New York, 1973. MR 0498996 (58:16978)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 22E30, 22E45, 58G10

Retrieve articles in all journals with MSC: 22E30, 22E45, 58G10

Additional Information

Keywords: Eigenvalues and eigenvectors for Dirac operator over $ SU(n,1)$ and over $ Spin(2n,1)$, discrete series, Blattner formula
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society