Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Convergence of diagonal Padé approximants for functions analytic near 0

Author: D. S. Lubinsky
Journal: Trans. Amer. Math. Soc. 347 (1995), 3149-3157
MSC: Primary 41A21; Secondary 30E10
MathSciNet review: 1283557
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For functions analytic in a neighbourhood of 0, we show that at least for a subsequence of the diagonal Padé approximants, the point 0 attracts a zero proportion of the poles. The same is true for every "sufficiently dense" diagonal subsequence. Consequently these subsequences have a convergence in capacity type property, which is possibly the correct analogue of the Nuttall-Pommerenke theorem in this setting.

References [Enhancements On Off] (What's this?)

  • [1] G. A. Baker, Essentials of Padé approximants, Academic Press, New York, 1975. MR 0454459 (56:12710)
  • [2] G. A. Baker and P. R. Graves-Morris, Padé approximants. Part 1: Basic theory, Encyclopaedia of Mathematics and its Applications, Vol. 13, Addison-Wesley, Reading, MA, 1981. MR 635619 (83a:41009a)
  • [3] A. A. Gončar, A local condition of single-valuedness of analytic functions, Math. USSR Sb. 18 (1972), 151-167.
  • [4] A. A. Gončar and L. D. Grigorjan, On estimates of the norm of the holomorphic component of a meromorphic function, Math. USSR Sb. 28 (1976), 571-575.
  • [5] L. D. Grigorjan, Estimates of the norm of the holomorphic components of functions meromorphic in domains with a smooth boundary, Math. USSR Sb. 29 (1976), 139-146.
  • [6] J. Karlsson, Rational interpolation and best rational approximation, J. Math. Anal. Appl. 53 (1976), 38-52. MR 0393955 (52:14762)
  • [7] D. S Lubinsky, Diagonal Padé approximants and capacity, J. Math. Anal. Appl. 78 (1980), 58-67. MR 595764 (82e:30050)
  • [8] -, Divergence of complex rational approximations, Pacific J. Math. 108 (1983), 141-153. MR 709706 (84i:41024)
  • [9] -, Distribution of poles of diagonal rational approximants to functions of fast rational approximability, Constr. Approx. 7 (1991), 501-519. MR 1124973 (92h:30075)
  • [10] -, Spurious poles in diagonal rational approximation, Progress in Approximation Theory: An International Perspective (A. A. Gončar and E. B. Saff, eds.), Springer Ser. Comput. Math., vol. 9, Springer-Verlag, New York, 1992, pp. 191-213. MR 1240783 (94m:41027)
  • [11] J. Nuttall, The convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl. 31 (1970), 147-153. MR 0288279 (44:5477)
  • [12] O. G. Parfenov, Estimates of the singular numbers of the Carleson imbedding operator, Math. USSR Sb. 59 (1988), 497-514. MR 881910 (88e:46031)
  • [13] A. A. Pekarskiĭ, Best rational approximations in the complex domain, Proc. Steklov. Inst. Math. 190 (1992), 231-243.
  • [14] Ch. Pommerenke, Padé approximants and convergence in capacity, J. Math. Anal. Appl. 41 (1973), 775-780. MR 0328090 (48:6432)
  • [15] E. A. Rahmanov, On the convergence of Padé approximants in classes of holomorphic functions, Math. USSR Sb. 40 (1981), 149-155.
  • [16] H. Stahl, A note on three conjectures by Gonchar on rational approximation, J. Approx. Theory 50 (1987), 3-7. MR 888047 (88j:41046)
  • [17] -, General convergence results for Padé approximants, Approximation Theory VI (C. K. Chui et al., eds.), Academic Press, San Diego, CA, 1989, pp. 605-634.
  • [18] H. Wallin, The convergence of Padé approximants and the size of the power series coefficients, Applicable Anal. 4 (1974), 235-251. MR 0393445 (52:14255)
  • [19] -, Potential theory and approximation of analytic functions by rational interpolation, Proc. Colloq. Complex Analysis at Joensuu, Lecture Notes in Math., vol. 747, Springer-Verlag, Berlin, 1979, pp. 434-450. MR 553073 (81i:30069)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A21, 30E10

Retrieve articles in all journals with MSC: 41A21, 30E10

Additional Information

Keywords: Padé approximants, convergence of diagonal Padé approximants, pole distribution
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society