Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Convergence of diagonal Padé approximants for functions analytic near 0


Author: D. S. Lubinsky
Journal: Trans. Amer. Math. Soc. 347 (1995), 3149-3157
MSC: Primary 41A21; Secondary 30E10
MathSciNet review: 1283557
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For functions analytic in a neighbourhood of 0, we show that at least for a subsequence of the diagonal Padé approximants, the point 0 attracts a zero proportion of the poles. The same is true for every "sufficiently dense" diagonal subsequence. Consequently these subsequences have a convergence in capacity type property, which is possibly the correct analogue of the Nuttall-Pommerenke theorem in this setting.


References [Enhancements On Off] (What's this?)

  • [1] George A. Baker Jr., Essentials of Padé approximants, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0454459
  • [2] George A. Baker Jr. and Peter Graves-Morris, Padé approximants. Part I, Encyclopedia of Mathematics and its Applications, vol. 13, Addison-Wesley Publishing Co., Reading, Mass., 1981. Basic theory; With a foreword by Peter A. Carruthers. MR 635619
  • [3] A. A. Gončar, A local condition of single-valuedness of analytic functions, Math. USSR Sb. 18 (1972), 151-167.
  • [4] A. A. Gončar and L. D. Grigorjan, On estimates of the norm of the holomorphic component of a meromorphic function, Math. USSR Sb. 28 (1976), 571-575.
  • [5] L. D. Grigorjan, Estimates of the norm of the holomorphic components of functions meromorphic in domains with a smooth boundary, Math. USSR Sb. 29 (1976), 139-146.
  • [6] Johan Karlsson, Rational interpolation and best rational approximation, J. Math. Anal. Appl. 53 (1976), no. 1, 38–52. MR 0393955
  • [7] D. S. Lubinsky, Diagonal Padé approximants and capacity, J. Math. Anal. Appl. 78 (1980), no. 1, 58–67. MR 595764, 10.1016/0022-247X(80)90210-3
  • [8] D. S. Lubinsky, Divergence of complex rational approximations, Pacific J. Math. 108 (1983), no. 1, 141–153. MR 709706
  • [9] D. S. Lubinsky, Distribution of poles of diagonal rational approximants to functions of fast rational approximability, Constr. Approx. 7 (1991), no. 4, 501–519. MR 1124973, 10.1007/BF01888172
  • [10] D. S. Lubinsky, Spurious poles in diagonal rational approximation, Progress in approximation theory (Tampa, FL, 1990) Springer Ser. Comput. Math., vol. 19, Springer, New York, 1992, pp. 191–213. MR 1240783, 10.1007/978-1-4612-2966-7_8
  • [11] J. Nuttall, The convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl. 31 (1970), 147–153. MR 0288279
  • [12] O. G. Parfënov, Estimates for singular numbers of the Carleson embedding operator, Mat. Sb. (N.S.) 131(173) (1986), no. 4, 501–518 (Russian); English transl., Math. USSR-Sb. 59 (1988), no. 2, 497–514. MR 881910
  • [13] A. A. Pekarskiĭ, Best rational approximations in the complex domain, Proc. Steklov. Inst. Math. 190 (1992), 231-243.
  • [14] Ch. Pommerenke, Padé approximants and convergence in capacity, J. Math. Anal. Appl. 41 (1973), 775–780. MR 0328090
  • [15] E. A. Rahmanov, On the convergence of Padé approximants in classes of holomorphic functions, Math. USSR Sb. 40 (1981), 149-155.
  • [16] Herbert Stahl, A note on three conjectures by Gonchar on rational approximation, J. Approx. Theory 50 (1987), no. 1, 3–7. MR 888047, 10.1016/0021-9045(87)90060-8
  • [17] -, General convergence results for Padé approximants, Approximation Theory VI (C. K. Chui et al., eds.), Academic Press, San Diego, CA, 1989, pp. 605-634.
  • [18] Hans Wallin, The convergence of Padé approximants and the size of the power series coefficients, Applicable Anal. 4 (1974), no. 3, 235–251. MR 0393445
  • [19] Hans Wallin, Potential theory and approximation of analytic functions by rational interpolation, Complex analysis Joensuu 1978 (Proc. Colloq., Univ. Joensuu, Joensuu, 1978), Lecture Notes in Math., vol. 747, Springer, Berlin, 1979, pp. 434–450. MR 553073

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A21, 30E10

Retrieve articles in all journals with MSC: 41A21, 30E10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1283557-3
Keywords: Padé approximants, convergence of diagonal Padé approximants, pole distribution
Article copyright: © Copyright 1995 American Mathematical Society