Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ L\sp p$ spectra of pseudodifferential operators generating integrated semigroups


Author: Matthias Hieber
Journal: Trans. Amer. Math. Soc. 347 (1995), 4023-4035
MSC: Primary 47G30; Secondary 35P05, 35S05, 47D06
DOI: https://doi.org/10.1090/S0002-9947-1995-1303120-5
MathSciNet review: 1303120
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the $ {L^p}$-realization $ {\text{O}}{{\text{p}}_p}(a)$ of a pseudodifferential operator with symbol $ a \in S_{\rho ,0}^m$ having constant coefficients. We show that for a certain class of symbols the spectrum of $ {\text{O}}{{\text{p}}_p}(a)$ is independent of $ p$. This implies that $ {\text{O}}{{\text{p}}_p}(a)$ generates an $ N$-times integrated semigroup on $ {L^p}({\mathbb{R}^n})$ for a certain $ N$ if and only if $ \rho ({\text{O}}{{\text{p}}_p}(a)) \ne \emptyset $ and the numerical range of $ a$ is contained in a left half-plane. Our method allows us also to construct examples of operators generating integrated semigroups on $ {L^p}({\mathbb{R}^n})$ if and only if $ p$ is sufficiently close to $ 2$.


References [Enhancements On Off] (What's this?)

  • [A] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. MR 920499 (89a:47064)
  • [AK] W. Arendt and H. Kellermann, Integrated solutions of Volterra integro-differential equations and applications, Volterra Integrodifferential Equations in Banach Spaces and Applications (G. Da Prato and M. Iannelli, eds.), Pitman Res. Notes Math., no. 190, Longman, Harlow, 1989, pp. 21-51. MR 1018871 (90h:47068)
  • [BE] M. Balabane and H. A. Emamirad, $ {L^p}$ estimates for Schrödinger evolution equations, Trans. Amer. Math. Soc. 291 (1985), 357-373. MR 805968 (87e:35050)
  • [Ba] E. Balslev, The essential spectrum of elliptic differential operators in $ {L^p}({\mathbb{R}^n})$, Trans. Amer. Math. Soc. 116 (1965), 193-217. MR 0190524 (32:7936)
  • [Br] P. Brenner, The Cauchy problem for symmetric, hyperbolic systems in $ {L^p}$, Math. Scand. 19 (1966), 27-37. MR 0212427 (35:3299)
  • [deL] R. deLaubenfels, Existence families, functional calculi and evolution equations, Lecture Notes in Math., vol. 1570, Springer, Berlin, 1994. MR 1290783 (96b:47047)
  • [DS] N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
  • [F] H. O. Fattorini, The Cauchy problem, Addison-Wesley, 1983. MR 692768 (84g:34003)
  • [FS] C. Fefferman and E. M. Stein, $ {H^p}$ spaces of several variables, Acta Math. 129 (1972), 137-193. MR 0447953 (56:6263)
  • [G] J. A. Goldstein, Semigroups of linear operators and applications, Oxford Univ. Press, 1985. MR 790497 (87c:47056)
  • [Hi1] M. Hieber, Integrated semigroups and differential operators on $ {L^p}$ spaces, Math. Ann. 291 (1991), 1-16. MR 1125004 (92g:47052)
  • [Hi2] -, Spectral theory and Cauchy problems on $ {L^p}$-spaces, Math. Z. 216 (1994), 613-628. MR 1288048 (96b:47055)
  • [HP] E. Hille and R. S. Philipps, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, RI, 1957.
  • [Hö1] L. Hörmander, Estimates for translation invariant operators in $ {L^p}$ spaces, Acta Math. 104 (1960), 93-140. MR 0121655 (22:12389)
  • [Hö2] -, The analysis of linear partial differential operators. II, Springer-Verlag, Berlin, Heidelberg, and New York, 1983. MR 705278 (85g:35002b)
  • [IS] F. T. Iha and C. F. Schubert, The spectrum of partial differential operators on $ {L^p}({\mathbb{R}^n})$, Trans. Amer. Math. Soc. 152 (1970), 215-226. MR 0270211 (42:5103)
  • [KT] C. Kenig and P. Tomas, $ {L^p}$ behavior of certain second order differential operators, Trans. Amer. Math. Soc. 262 (1980), 521-531. MR 586732 (83d:42019)
  • [L] G. Lumer, Solutions généralisees et semi-groupes intégré, C. R. Acad. Sci. Paris Sér. I 310 (1990), 577-582. MR 1050135 (91b:34092)
  • [M] A. Miyachi, On some singular Fourier multipliers, J. Fac. Sci. Univ. Tokyo 28 (1981), 267-315. MR 633000 (83a:42017)
  • [P] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Springer, New York, 1983. MR 710486 (85g:47061)
  • [Sch] M. Schechter, Spectra of partial differential operators, North-Holland, Amsterdam and London, 1971. MR 869254 (88h:35085)
  • [S] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, NJ, 1970. MR 0290095 (44:7280)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47G30, 35P05, 35S05, 47D06

Retrieve articles in all journals with MSC: 47G30, 35P05, 35S05, 47D06


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1995-1303120-5
Article copyright: © Copyright 1995 American Mathematical Society

American Mathematical Society