Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Some New Homogeneous Einstein Metrics
on Symmetric Spaces


Author: Megan M. Kerr
Journal: Trans. Amer. Math. Soc. 348 (1996), 153-171
MSC (1991): Primary 53C25; Secondary 53C30, 53C35
MathSciNet review: 1327258
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We classify homogeneous Einstein metrics on compact irreducible symmetric spaces. In particular, we consider symmetric spaces with rank$(M)\!> 1$, not isometric to a compact Lie group. Whenever there exists a closed proper subgroup $G$ of Isom$(M)$ acting transitively on $M$ we find all $G$-homogeneous (non-symmetric) Einstein metrics on $M$.


References [Enhancements On Off] (What's this?)

  • [A] V. A. Aleksandrov, An interconnection between the problem of unique determination of a domain in 𝑅ⁿ and the problem of reconstruction of a locally Euclidean metric, Sibirsk. Mat. Zh. 33 (1992), no. 4, 206–211, 224 (Russian, with Russian summary); English transl., Siberian Math. J. 33 (1992), no. 4, 732–736 (1993). MR 1185450, 10.1007/BF00971139
  • [Ber] Marcel Berger, Quelques formules de variation pour une structure riemannienne, Ann. Sci. École Norm. Sup. (4) 3 (1970), 285–294 (French). MR 0278238
  • [Bes] Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684
  • [DA-Z] J. E. D’Atri and W. Ziller, Naturally reductive metrics and Einstein metrics on compact Lie groups, Mem. Amer. Math. Soc. 18 (1979), no. 215, iii+72. MR 519928
  • [H] D. Hilbert, Die Grundlagen der Physik, Nachr. Akad. Wiss. Gött., (1915), 395--407.
  • [Je1] Gary R. Jensen, The scalar curvature of left-invariant Riemannian metrics, Indiana Univ. Math. J. 20 (1970/1971), 1125–1144. MR 0289726
  • [Je2] Gary R. Jensen, Einstein metrics on principal fibre bundles, J. Differential Geometry 8 (1973), 599–614. MR 0353209
  • [K] Masahiro Kimura, Homogeneous Einstein metrics on certain Kähler 𝐶-spaces, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 303–320. MR 1145261
  • [M] Shingo Murakami, Exceptional simple Lie groups and related topics in recent differential geometry, Differential geometry and topology (Tianjin, 1986–87) Lecture Notes in Math., vol. 1369, Springer, Berlin, 1989, pp. 183–221. MR 1001187, 10.1007/BFb0087534
  • [O1] A. L. Oniščik, Inclusion relations between transitive compact transformation groups, Trudy Moskov. Mat. Obšč. 11 (1962), 199–242 (Russian). MR 0153779
  • [O2] A. L. Oniščik, Transitive compact transformation groups, Mat. Sb. (N.S.) 60 (102) (1963), 447–485 (Russian). MR 0155935
  • [O3] A. L. Oniščik, Lie groups that are transitive on Grassmann and Stiefel manifolds, Mat. Sb. (N.S.) 83 (125) (1970), 407–428 (Russian). MR 0274651
  • [S] Alexander Shchetinin, On a class of compact homogeneous spaces. I, Ann. Global Anal. Geom. 6 (1988), no. 2, 119–140. MR 982761, 10.1007/BF00133035
  • [T] Etsuo Tsukada, Transitive actions of compact connected Lie groups on symmetric spaces, Sci. Rep. Niigata Univ. Ser. A 15 (1978), 1–13. MR 0474351
  • [W-Z] McKenzie Y. Wang and Wolfgang Ziller, Existence and nonexistence of homogeneous Einstein metrics, Invent. Math. 84 (1986), no. 1, 177–194. MR 830044, 10.1007/BF01388738
  • [W] A. J. Wolf, Spaces of Constant Curvature, $5^{th}$ ed., Publish or Perish, Inc., 1984.
  • [Z] W. Ziller, Homogeneous Einstein metrics on spheres and projective spaces, Math. Ann. 259 (1982), no. 3, 351–358. MR 661203, 10.1007/BF01456947

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 53C25, 53C30, 53C35

Retrieve articles in all journals with MSC (1991): 53C25, 53C30, 53C35


Additional Information

Megan M. Kerr
Affiliation: Department of Mathematics, University of Pennsylvania, 209 S. 33rd Street, Philadelphia, Pennsylvania 19104-6395
Address at time of publication: Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755
Email: megan@math.upenn.edu

DOI: https://doi.org/10.1090/S0002-9947-96-01512-7
Received by editor(s): August 29, 1994
Article copyright: © Copyright 1996 American Mathematical Society