Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the conjecture of Birch and Swinnerton-Dyer


Author: Cristian D. Gonzalez-Avilés
Journal: Trans. Amer. Math. Soc. 349 (1997), 4181-4200
MSC (1991): Primary 11G40, 11G05
DOI: https://doi.org/10.1090/S0002-9947-97-01762-5
MathSciNet review: 1390036
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we complete Rubin's partial verification of the conjecture for a large class of elliptic curves with complex multiplication by ${\mathbb {Q}}(\sqrt {-7})$.


References [Enhancements On Off] (What's this?)

  • [1] M.I. Bashmakov, The cohomology of abelian varieties over a number field, Russian Math. Surveys 27 no. 6 (1972), 25-70. MR 53:2961
  • [2] P. Byrd and M. Friedman, Handbook of Elliptic Integrals for Enginners and Scientists, second ed., Springer-Verlag, 1971. MR 43:3506
  • [3] J.W.S. Cassels, Arithmetic on curves of genus 1 (VIII), J. Reine Angew. Math. 217 (1965), 180-189. MR 31:3420
  • [4] J. Coates, Infinite descent on elliptic curves with complex multiplication, Arithmetic and Geometry, papers dedicated to I.R. Shafarevich on the occasion of his $60^{\mathrm {th}}$ birthday. Prog. Math. 35, Birkhäuser, 1983, pp. 107-136. MR 85d:11101
  • [5] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), 223-251. MR 57:3134
  • [6] -, Kummer's criterion for Hurwitz numbers, Alg. Number Theory, Kyoto 1976, Japan Soc. for the Promotion of Science, Tokyo, 1977, pp. 9-23. MR 56:8537
  • [7] S. Comalada, Twists and reduction of an elliptic curve, J. Number Theory 49 (1994), 45-62. MR 95g:11047
  • [8] E. de Shalit, The Iwasawa Theory of Elliptic Curves with Complex Multiplication, Perspect. Math. 3, Academic Press, 1987. MR 89g:11046
  • [9] M. Deuring, Die Zetafunktion einer algebraischen Kurve von Geschlechte Eins, I-IV, Gott. Nachr. 1953, 85-94; 1955, 13-42; 1956, 37-76; 1957, 55-80. MR 15:779d; MR 17:17c; MR 18:113e; MR 19:637a
  • [10] R. Gillard, Remarques sur les unités cyclotomiques et les unités elliptiques, J. Number Theory 11 (1979), 21-48. MR 80j:12004
  • [11] C.D. Gonzalez-Avilés, On the ``2-part" of the Birch and Swinnerton-Dyer conjecture for elliptic curves with complex multiplication, Ph.D. thesis, The Ohio State University, 1994.
  • [12] R. Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), 85-99. MR 80b:12007
  • [13] B. Gross, Arithmetic on elliptic curves with complex multiplication, Lect. Notes in Math. 776, Springer-Verlag, 1980. MR 81f:10041
  • [14] -, On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication, Number Theory related to Fermat's Last Theorem. Prog. Math. 26, Birkhäuser, 1982, pp. 219-236. MR 84e:14020
  • [15] T. Hadano, Conductor of elliptic curves with complex multiplication and elliptic curves of prime conductor, Proc. Japan Acad. 51 (1975), 92-95. MR 51:8124
  • [16] J. Lehman, Rational points on elliptic curves with complex multiplication by the ring of integers in ${\mathbb {Q}}(\sqrt {-7})$, J. Number Theory 27 (1987), 253-272. MR 89a:11059
  • [17] B. Mazur, Rational points of abelian varietes with values in towers of number fields, Invent. Math. 18 (1972), 183-266. MR 56:3020
  • [18] G. Robert, Concernant la relation de distribution satisfaite par la fonction $\varphi $ associeé à un réseau complexe, Invent. Math. 100 (1990), 231-257. MR 91j:11049
  • [19] K. Rubin, Congruences for special values of $L$-functions of elliptic curves with complex multiplication, Invent. Math. 71 (1983), 339-364. MR 84h:12018
  • [20] -, Tate-Shafarevich groups and $L$-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), 527-560. MR 89a:11065
  • [21] -, The ``main conjectures'' of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), 25-68. MR 92f:11151
  • [22] J-P. Serre and J. Tate, Good reduction of abelian varieties, Ann. of Math. 88 (1968), 492-517. MR 38:4488
  • [23] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton Univ. Press, 1971. MR 47:3318
  • [24] J. Silverman, The Arithmetic of Elliptic Curves., Grad. Texts in Math. 106, Springer-Verlag, 1986. MR 87g:11070
  • [25] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable (IV). Lect. Notes in Math. 476, Springer-Verlag, 1975, pp. 33-52. MR 52:13850
  • [26] L. Washington, Introduction to Cyclotomic Fields., Grad. Texts in Math. 83, Springer-Verlag, 1982. MR 85g:11001

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 11G40, 11G05

Retrieve articles in all journals with MSC (1991): 11G40, 11G05


Additional Information

Cristian D. Gonzalez-Avilés
Affiliation: Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
Email: cgonzale@abello.dic.uchile.cl

DOI: https://doi.org/10.1090/S0002-9947-97-01762-5
Received by editor(s): May 19, 1995
Received by editor(s) in revised form: March 6, 1996
Additional Notes: Supported by Fondecyt, proyecto no. 1950543.
Dedicated: A mis padres
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society