Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

On the conjecture of Birch and Swinnerton-Dyer


Author: Cristian D. Gonzalez-Avilés
Journal: Trans. Amer. Math. Soc. 349 (1997), 4181-4200
MSC (1991): Primary 11G40, 11G05
MathSciNet review: 1390036
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we complete Rubin's partial verification of the conjecture for a large class of elliptic curves with complex multiplication by ${\mathbb {Q}}(\sqrt {-7})$.


References [Enhancements On Off] (What's this?)

  • [1] M. I. Bašmakov, Cohomology of Abelian varieties over a number field, Uspehi Mat. Nauk 27 (1972), no. 6(168), 25–66 (Russian). MR 0399110
  • [2] Paul F. Byrd and Morris D. Friedman, Handbook of elliptic integrals for engineers and scientists, Die Grundlehren der mathematischen Wissenschaften, Band 67, Springer-Verlag, New York-Heidelberg, 1971. Second edition, revised. MR 0277773
  • [3] J. W. S. Cassels, Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math. 217 (1965), 180–199. MR 0179169
  • [4] John Coates, Infinite descent on elliptic curves with complex multiplication, Arithmetic and geometry, Vol. I, Progr. Math., vol. 35, Birkhäuser Boston, Boston, MA, 1983, pp. 107–137. MR 717591
  • [5] J. Coates and A. Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent. Math. 39 (1977), no. 3, 223–251. MR 0463176
  • [6] J. Coates and A. Wiles, Kummer’s criterion for Hurwitz numbers, Algebraic number theory (Kyoto Internat. Sympos., Res. Inst. Math. Sci., Univ. Kyoto, Kyoto, 1976) Japan Soc. Promotion Sci., Tokyo, 1977, pp. 9–23. MR 0450241
  • [7] Salvador Comalada, Twists and reduction of an elliptic curve, J. Number Theory 49 (1994), no. 1, 45–62. MR 1295951, 10.1006/jnth.1994.1079
  • [8] Ehud de Shalit, Iwasawa theory of elliptic curves with complex multiplication, Perspectives in Mathematics, vol. 3, Academic Press, Inc., Boston, MA, 1987. 𝑝-adic 𝐿 functions. MR 917944
  • [9] Max Deuring, Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. Math.-Phys.-Chem. Abt. 1953 (1953), 85–94 (German). MR 0061133
    Max Deuring, Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. II, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa. 1955 (1955), 13–42 (German). MR 0070666
    Max Deuring, Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. III, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa. 1956 (1956), 37–76 (German). MR 0079611
    Max Deuring, Die Zetafunktion einer algebraischen Kurve vom Geschlechte Eins. IV, Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa. 1957 (1957), 55–80 (German). MR 0089227
  • [10] Roland Gillard, Remarques sur les unités cyclotomiques et les unités elliptiques, J. Number Theory 11 (1979), no. 1, 21–48 (French). MR 527759, 10.1016/0022-314X(79)90018-0
  • [11] C.D. Gonzalez-Avilés, On the ``2-part" of the Birch and Swinnerton-Dyer conjecture for elliptic curves with complex multiplication, Ph.D. thesis, The Ohio State University, 1994.
  • [12] Ralph Greenberg, On the structure of certain Galois groups, Invent. Math. 47 (1978), no. 1, 85–99. MR 504453, 10.1007/BF01609481
  • [13] Benedict H. Gross, Arithmetic on elliptic curves with complex multiplication, Lecture Notes in Mathematics, vol. 776, Springer, Berlin, 1980. With an appendix by B. Mazur. MR 563921
  • [14] Benedict H. Gross, On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication, Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981), Progr. Math., vol. 26, Birkhäuser, Boston, Mass., 1982, pp. 219–236. MR 685298
  • [15] Toshihiro Hadano, Conductor of elliptic curves with complex multiplication and elliptic curves of prime conductor, Proc. Japan Acad. 51 (1975), 92–95. MR 0371907
  • [16] J. Larry Lehman, Rational points on elliptic curves with complex multiplication by the ring of integers in 𝑄(√-7), J. Number Theory 27 (1987), no. 3, 253–272. MR 915499, 10.1016/0022-314X(87)90066-7
  • [17] Barry Mazur, Rational points of abelian varieties with values in towers of number fields, Invent. Math. 18 (1972), 183–266. MR 0444670
  • [18] G. Robert, Concernant la relation de distribution satisfaite par la fonction 𝜑 associée à un réseau complexe, Invent. Math. 100 (1990), no. 2, 231–257 (French, with English summary). MR 1047134, 10.1007/BF01231186
  • [19] Karl Rubin, Congruences for special values of 𝐿-functions of elliptic curves with complex multiplication, Invent. Math. 71 (1983), no. 2, 339–364. MR 689648, 10.1007/BF01389102
  • [20] Karl Rubin, Tate-Shafarevich groups and 𝐿-functions of elliptic curves with complex multiplication, Invent. Math. 89 (1987), no. 3, 527–559. MR 903383, 10.1007/BF01388984
  • [21] Karl Rubin, The “main conjectures” of Iwasawa theory for imaginary quadratic fields, Invent. Math. 103 (1991), no. 1, 25–68. MR 1079839, 10.1007/BF01239508
  • [22] Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 0236190
  • [23] Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. Kan\cflex o Memorial Lectures, No. 1. MR 0314766
  • [24] Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210
  • [25] J. Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular functions of one variable, IV (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Springer, Berlin, 1975, pp. 33–52. Lecture Notes in Math., Vol. 476. MR 0393039
  • [26] Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. MR 718674

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 11G40, 11G05

Retrieve articles in all journals with MSC (1991): 11G40, 11G05


Additional Information

Cristian D. Gonzalez-Avilés
Affiliation: Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile
Email: cgonzale@abello.dic.uchile.cl

DOI: https://doi.org/10.1090/S0002-9947-97-01762-5
Received by editor(s): May 19, 1995
Received by editor(s) in revised form: March 6, 1996
Additional Notes: Supported by Fondecyt, proyecto no. 1950543.
Dedicated: A mis padres
Article copyright: © Copyright 1997 American Mathematical Society