Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Nonsymmetric systems
on nonsmooth planar domains


Authors: G. C. Verchota and A. L. Vogel
Journal: Trans. Amer. Math. Soc. 349 (1997), 4501-4535
MSC (1991): Primary 35J55, 31A25
DOI: https://doi.org/10.1090/S0002-9947-97-02047-3
MathSciNet review: 1443894
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study boundary value problems, in the sense of Dahlberg, for second order constant coefficient strongly elliptic systems. In this class are systems without a variational formulation, viz. the nonsymmetric systems. Various similarities and differences between this subclass and the symmetrizable systems are examined in nonsmooth domains.


References [Enhancements On Off] (What's this?)

  • [ADN64] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. ii., Comm. Pure Appl. Math 17 (1964), 35-92. MR 28:5252
  • [BG93] Heinrich Begehr and Robert P Gilbert, Transformations, transmutations, and kernel functions Volume 2, Pitman Monographs and Surveys in Pure and Applied Mathematics 59, Longman Scientific & Technical, Copublished by John Wiley & Sons Inc., New York, 1993. MR 95b:35001
  • [Bit48] A. V. Bitsadze, On the uniqueness of the solutions of the Dirichlet problem for elliptic partial differential equations, Uspehi Mat. Nauk 3 (1948), no. 6, 211-212. (Russian) MR 10:300f
  • [Cal77] A. P. Calderon, Cauchy integrals on Lipschitz curves and related operators, Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 1324-1327. MR 57:6445
  • [CD93] M. Costabel and M. Dauge, Construction of corner singularities for Agmon-Douglis-Nirenberg elliptic systems, Math. Nachr. 162 (1993), 209-237. MR 94k:35090
  • [CMM82] R. R. Coifman, A. McIntosh, and Y. Meyer, L'intégrale de Cauchy définit un opérateur borné sur $L^2$ pour les courbes Lipschitziennes, Ann. of Math. 116 (1982), 361-387. MR 84m:42027
  • [CW77] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-646. MR 56:6264
  • [Dah77] B. E. J. Dahlberg, On estimates of harmonic measure, Arch. Rational Mech. Anal. 65 (1977), 272-288. MR 57:6470
  • [Dah79] B. E. J. Dahlberg, On the Poisson integral for Lipschitz and $C^1$ domains, Studia Math. 66 (1979), 13-24. MR 81g:31007
  • [DK$^{+}$] B. E. J. Dahlberg, C. E. Kenig, J. Pipher, and G. C. Verchota, Area integral estimates and maximum principles for higher order elliptic equations and systems, in preparation.
  • [DK87] B. E. J. Dahlberg and C. E. Kenig, Hardy spaces and the Neumann problem in $L^p$ for Laplace's equation in Lipschitz domains, Annals of Mathematics 125 (1987), 437-465. MR 88d:35044
  • [DK90] B. E. J. Dahlberg and C. E. Kenig, $L^p$ estimates for the 3-dimensional systems of elastostatics on Lipschitz domains, Lecture Notes in Pure and Applied Math., vol. 122, Dekker, New York, 1990, pp. 621-634. MR 91h:35053
  • [DKV86] B. E. J. Dahlberg, C. E. Kenig, and G. C. Verchota, The Dirichlet problem for the biharmonic equation in a Lipschitz domain, Ann. Inst. Fourier(Grenoble) 36 (1986), 109-135. MR 88a:35070
  • [DKV88] B. E. J. Dahlberg, C. E. Kenig, and G. C. Verchota, Boundary value problems for the system of elastostatics in Lipschitz domains, Duke Math Journal 37 (1988), 795-818. MR 90d:35259
  • [DL92] L. Diomeda and B. Lisena, The Dirichlet problem for elliptic systems in piecewise $C^1$ plane domains, Indiana University Math Journal 41 (1992), no. 3, 649-670. MR 94a:35035
  • [FJL76] E. B. Fabes, M. Jodeit, and J. E. Lewis, On the spectra of a Hardy kernel, J. Funct. Anal. 21 (1976), 187-194. MR 52:15114
  • [FJL77] E. B. Fabes, M. Jodeit, and J. E. Lewis, Double layer potentials for domains with corners and edges, Indiana Univ. Math. J. 26 (1977), 95-114. MR 55:5879
  • [FJR78] E. B. Fabes, M. Jodeit, and N. M. Riviere, Potential techniques for boundary value problems on $C^1$ domains, Acta Math. 141 (1978), 165-186. MR 80b:31006
  • [FK81] E. B. Fabes and C. E. Kenig, On the Hardy space $H^1$ of a $C^1$ domain, Arkiv Mat. 19 (1981), 1-22. MR 84a:42029
  • [Gar81] John B. Garnett, Bounded analytic functions, Academic Press, New York, 1981. MR 83g:30037
  • [JK81] D. Jerison and C. E. Kenig, The Neumann problem on Lipschitz domains, Bull. Amer. Math. Soc. 4 (1981), 203-207. MR 84a:35064
  • [Joh55] Fritz John, Plane waves and spherical means applied to partial differential equations, Interscience, New York, 1955. MR 17:746d
  • [Ken80] C. E. Kenig, Weighted $H^p$ spaces on Lipschitz domains, American Journal of Mathematics 102 (1980), no. 1, 129-163. MR 81d:30060
  • [Koz90] V. A. Kozlov, On the singularities of solutions of the Dirichlet problem for elliptic equations in the neighborhood of corner points, Leningrad Math. J. 1 (1990), 967-982. MR 91c:35048
  • [KWCQ85] Hua Loo Keng, Lin Wei, and Wu Ci-Quian, Second-order systems of partial differential equations in the plane, Pitman Advanced Publishing Program, Boston London Melbourne, 1985. MR 88m:35002
  • [LP80] J. E. Lewis and C. Parenti, Pseudodifferential operators and Hardy kernels on $L^p({\mathbb {R}}^+)$, Annali Sc. Norm. Sup. Pisa Ser IV 7 (1980), 481-503. MR 83d:47052
  • [LP83] J. E. Lewis and C. Parenti, Pseudodifferential operators of Mellin type, Comm. PDE 8 (1983), 477-544. MR 86f:35185
  • [PV93] J. Pipher and G. C. Verchota, The maximum principle for biharmonic functions in Lipschitz and $C^1$ domains, Commentarii Math. Helvetici 68 (1993), 385-414. MR 94j:35030
  • [PV95a] J. Pipher and G. C. Verchota, Dilation invariant estimates and the boundary Garding inequality for higher order elliptic operators, Ann. Of Math. 142 (1995), 1-38. MR 96g:35052
  • [PV95b] J. Pipher and G. C. Verchota, Maximum principles for the polyharmonic equation on Lipschitz domains, Potential Analysis 4 (1995), 615-636. MR 96i:35021
  • [SK$^{+}$60] Ding Shia-Kuai et al., On the definition of the second order elliptic system of partial differential equations with constant coefficients, Acta Math. Sinica 10 (1960), 276-287; English translation, Chinese Math. 1 (1960), 288-299. MR 27:2713
  • [Var77] N. T. Varopoulos, BMO functions and the $\overline {\partial }$-equation, Pacific J. Math. 71 (1977), 221-273. MR 58:22639a
  • [Ver84] G. C. Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572-611. MR 86e:35038
  • [Ver87] G. C. Verchota, The Dirichlet problem for the biharmonic equation in $C^1$ domains, Ind. Univ. Math J. 36 (1987), 867-895. MR 88m:35051
  • [Ver96] G. C. Verchota, Potentials for the Dirichlet problem in Lipschitz domains, Potential Theory-ICPT 94 (Kouty, 1994), de Gruyter, Berlin, 1996, pp. 167-187. CMP 96:17

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 35J55, 31A25

Retrieve articles in all journals with MSC (1991): 35J55, 31A25


Additional Information

G. C. Verchota
Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244

A. L. Vogel
Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
Email: alvogel@izebug.syr.edu

DOI: https://doi.org/10.1090/S0002-9947-97-02047-3
Keywords: Elliptic, bianalytic, weak maximum principle, Rellich identity, boundary value problems, nonvariational
Received by editor(s): November 10, 1995
Additional Notes: The first author was partially supported by NSF Grant DMS-9401354.
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society