Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Lower bounds for derivatives of polynomials and Remez type inequalities


Authors: Tamás Erdélyi and Paul Nevai
Journal: Trans. Amer. Math. Soc. 349 (1997), 4953-4972
MSC (1991): Primary 33A65; Secondary 26C05, 42C05
DOI: https://doi.org/10.1090/S0002-9947-97-01875-8
MathSciNet review: 1407486
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: P. Turán [Über die Ableitung von Polynomen, Comositio Math. 7 (1939), 89-95] proved that if all the zeros of a polynomial $p$ lie in the unit interval $I% \overset {\text {def}}{=} [-1,1]$, then $\|p'\|_{L^{\infty }(I)}\ge {\sqrt {\deg (p)}}/{6}\; \|p\|_{L^{\infty }(I)}\;$. Our goal is to study the feasibility of $\lim _{{n\to \infty }% }{\|p_{n}'\|_{X}} / {\|p_{n}\|_{Y}} =\infty $ for sequences of polynomials $\{p_{n}\}_{n\in \mathbb N% }$ whose zeros satisfy certain conditions, and to obtain lower bounds for derivatives of (generalized) polynomials and Remez type inequalities for generalized polynomials in various spaces.


References [Enhancements On Off] (What's this?)

  • 1. J. G. Clunie and A. B. J. Kuijlaars, Approximation by polynomials with restricted zeros, J. Approx. Theory 79 (1994), 109-124. MR 95k:30008
  • 2. Z. Ditzian and V. Totik, Moduli of Smoothness, Springer Series in Computational Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1987. MR 89h:41002
  • 3. T. Erdélyi, Remez-type inequalities and their applications, J. Comput. Appl. Math. 47 (1993), 167-209. MR 94m:26003
  • 4. T. Erdélyi, Remez-type inequalities on the size of generalized polynomials, J. Lond. Math. Soc. 45 (1992), 255-264. MR 93e:41002
  • 5. T. Erdélyi, A. Máté, and P. Nevai, Inequalities for generalized non-negative polynomials, Constr. Approx. 8 (1992), 241-255. MR 93e:41020
  • 6. P. Erd\H{o}s, On extremal properties of the derivatives of polynomials, Annals Math. 41 (1940), 310-313. MR 1:323g
  • 7. J. Er\H{o}d, On lower bounds of the maximums of certain polynomials, Mat. Fiz. Lapok 46 (1939), 58-83 (Hungarian).
  • 8. G. Freud, Orthogonal Polynomials, Pergamon Press, Oxford, 1971. MR 58:1932 (German original)
  • 9. B. Ja. Levin, On the convergence of sequences of $H$-polynomials, Mat. Sb. 66(108) (1965), 384-397 (Russian). MR 30:4910
  • 10. L. M. Milne-Thomson, The Calculus of Finte Differences, Second (unaltered) edition, Chelsea Publ. Co., New York, 1981. MR 13:245c (1st ed., second printing)
  • 11. I. P. Natanson, Constructive Function Theory, Vol. 1, Uniform Approximation, Frederick Ungar Publ. Co., New York, New York, 1964. MR 33:4529a
  • 12. P. Nevai, Orthogonal Polynomials, Memoirs of Amer. Math. Soc., vol. 213, Providence, Rhode Island, 1979. MR 80k:42025
  • 13. P. Nevai, Bernstein's inequality in $L^{p}$ for $0<p<1$, J. Approx. Theory 27 (1979), 239-243.
  • 14. F. Riesz and B. Sz.-Nagy, Functional Analysis, translated from the second French edition by L. F. Boron, Ungar, New York, 1955. MR 17:175i
  • 15. I. Schur, Über das Maximum des absoluten Bertrages eines Polynoms in einem gegebenen Intervale, Math. Z. 4 (1919), 271-287.
  • 16. P. Turán, Über die Ableitung von Polynomen, Compositio Math. 7 (1939), 89-95. MR 1:37b
  • 17. J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, Colloquium Publications, Vol. 20, Fifth Edition, Amer. Math. Soc., Providence, Rhode Island, 1969. MR 36:1672b (4th ed.)
  • 18. S. P. Zhou, Some remarks on Turán's inequality III: The completion, Anal. Math. 21 (1995), 313-318. MR 96h:41014

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (1991): 33A65, 26C05, 42C05

Retrieve articles in all journals with MSC (1991): 33A65, 26C05, 42C05


Additional Information

Tamás Erdélyi
Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
Email: terdelyi@math.tamu.edu

Paul Nevai
Affiliation: Department of Mathematics, The Ohio State University, 231 West 18th Avenue, Columbus, Ohio 43210-1174
Email: nevai@math.ohio-state.edu

DOI: https://doi.org/10.1090/S0002-9947-97-01875-8
Keywords: Markov type inequalities, Remez type inequalities, Tur\'{a}n type inequalities, derivatives, algebraic polynomials, trigonometric polynomials, generalized polynomials
Received by editor(s): April 20, 1996
Additional Notes: This material is based upon work supported by the National Science Foundation under Grants No. DMS–9024901 (both authors) and No. DMS–940577 (P. N.).
Article copyright: © Copyright 1997 American Mathematical Society

American Mathematical Society