Simple and semisimple Lie algebras

and codimension growth

Authors:
Antonio Giambruno, Amitai Regev and Michail V. Zaicev

Journal:
Trans. Amer. Math. Soc. **352** (2000), 1935-1946

MSC (2000):
Primary 17B01, 17B20, 16R10; Secondary 20C30, 17C05

DOI:
https://doi.org/10.1090/S0002-9947-99-02419-8

Published electronically:
December 14, 1999

MathSciNet review:
1637070

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the exponential growth of the codimensions of a finite dimensional Lie algebra over a field of characteristic zero. In the case when is semisimple we show that exists and, when is algebraically closed, is equal to the dimension of the largest simple summand of . As a result we characterize central-simplicity: is central simple if and only if .

**[B]**Yu. A. Bahturin,*Identical Relations in Lie Algebras*, VNU Science Press, Utrecht, 1987. MR**88f:17032****[BMR]**Yu. A. Bahturin, S. P. Mischenko and A. Regev,*On the Lie and associative codimension growth*, preprint.**[BR]**A. Berele and A. Regev,*Applications of hook diagrams to P.I. algebras*, J. Algebra**82**(1983), 559-567. MR**84g:16012****[Jac]**N. Jacobson,*Lie Algebras*, Interscience Publishers, 1962. MR**26:1345****[M]**S. P. Mischenko,*Growth of varieties of Lie algebras*, Uspekhi Matem. Nauk.**45**(1990), 25-45; English transl., Russian Math. Surveys**45**(1990), no. 6, 27-52. MR**92g:17003****[MP]**S. P. Mischenko and V. M. Petrogradsky,*Exponents of varieties of Lie algebras with a nilpotent commutator subalgebra*, Comm. Algebra**27**(1999), 2223-2230. CMP**99:11****[P]**V. M. Petrogradsky,*Growth of polynilpotent varieties of Lie algebras and fast increasing entire functions*, Mat. Sb.**188**(1997), no. 6, 119-138; English transl., Sb. Math.**188**(1997), 913-931. MR**99a:17008****[Ra]**Yu. P. Razmyslov,*Identities of algebras and their representations*, Transl. Math. Monogr. vol. 138, Amer. Math. Soc., Providence, RI, 1994. MR**95i:16022****[R1]**A. Regev,*Existence of identities in*, Israel J. Math**11**(1972), 131-152. MR**47:3442****[R2]**A. Regev,*The representations of and explicit identities for P.I. algebras*, J. Algebra**51**(1978), 25-40. MR**57:4745****[R3]**A. Regev,*The polynomial identities of matrices in characteristic zero*, Comm. Algebra**8**(1980), 1417-1467. MR**83c:15015****[R4]**A. Regev,*Asymptotic values for degrees associated with stripes of Young diagrams*, Adv. Math.**41**(1981), 115-136. MR**82h:20015****[V]**I. B. Volichenko,*Bases of a free Lie algebra modulo -ideals*, Dokl. Akad. Nauk BSSR**24**(1980), n. 5, 400-403. (Russian) MR**81h:17007****[ZM]**M. V. Zaicev and S. P. Mishchenko,*Varieties of Lie subalgebras of polynomial growth*, Uspekhi Matem. Nauk**52**(1997), no. 2, 165-166; English transl., Russian Math. Surveys**52**(1997), 432-433. CMP**98:04****[Z]**M. V. Zaicev,*Identities of affine Kac-Moody algebras*, Vestnik Moskov. Univ. Ser. I Mat. Mekh.**1996**, no. 2, 33-36; English transl., Moscow Univ. Math. Bull.**51**(1996), no. 2, 29-31. CMP**98:05**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
17B01,
17B20,
16R10,
20C30,
17C05

Retrieve articles in all journals with MSC (2000): 17B01, 17B20, 16R10, 20C30, 17C05

Additional Information

**Antonio Giambruno**

Affiliation:
Department of Mathematics, University of Palermo, Via Archirafi 34, 90123 Palermo, Italy

Email:
a.giambruno@unipa.it

**Amitai Regev**

Affiliation:
Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel and The Pennsylvania State University, University Park, Pennsylvania 16802

Email:
regev@wisdom.weizmann.ac.il, regev@math.psu.edu

**Michail V. Zaicev**

Affiliation:
Department of Mechanics and Mathematics, Moscow State University, Moscow 119899, Russia

Email:
zaicev@nw.math.msu.su

DOI:
https://doi.org/10.1090/S0002-9947-99-02419-8

Keywords:
Lie algebras,
polynomial identities,
codimensions

Received by editor(s):
November 27, 1997

Published electronically:
December 14, 1999

Additional Notes:
The first author was partially supported by MURST and CNR of Italy

The second author was partially supported by NSF Grant No. DMS-94-01197

The third author was partially supported by RFFI grants 96-01-00146 and 96-15-96050

Article copyright:
© Copyright 2000
American Mathematical Society