Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the commutativity of the algebra of invariant differential operators on certain nilpotent homogeneous spaces


Authors: Hidénori Fujiwara, Gérard Lion and Salah Mehdi
Journal: Trans. Amer. Math. Soc. 353 (2001), 4203-4217
MSC (2000): Primary 43A85, 22E27, 22E30
DOI: https://doi.org/10.1090/S0002-9947-01-02850-1
Published electronically: June 6, 2001
MathSciNet review: 1837228
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $G$ be a simply connected connected real nilpotent Lie group with Lie algebra $\mathfrak{g}$, $H$ a connected closed subgroup of $G$ with Lie algebra $\mathfrak{h}$ and $\beta\in\mathfrak{h}^{*}$ satisfying $\beta ([\mathfrak{h},\mathfrak{h} ])=\{0\}$. Let $\chi_{\beta}$ be the unitary character of $H$ with differential $2\sqrt{-1}\pi\beta$ at the origin. Let $\tau\equiv$ $Ind_{H}^{G}\chi_{\beta}$ be the unitary representation of $G$ induced from the character $\chi_{\beta}$ of $H$. We consider the algebra $\mathcal{D}(G,H,\beta)$ of differential operators invariant under the action of $G$ on the bundle with basis $H\backslash G$ associated to these data. We consider the question of the equivalence between the commutativity of $\mathcal{D}(G,H,\beta)$ and the finite multiplicities of $\tau$. Corwin and Greenleaf proved that if $\tau$ is of finite multiplicities, this algebra is commutative. We show that the converse is true in many cases.


References [Enhancements On Off] (What's this?)

  • [1] A. Baklouti and J. Ludwig, Invariant differential operators on certain nilpotent homogeneous spaces. To appear in Monatshefte für Mathematik.
  • [2] P. Bernat, N. Conze, M. Duflo, M. Lévy-Nahas, M. Rais, P. Renouard, M. Vergne, Représentations des groupes de Lie résolubles. Monographies de la Société Mathématique de France, No $4$, Dunod, Paris, $1972$. MR 56:3183
  • [3] L. Corwin and F. P. Greenleaf, A canonical approach to multiplicity formulas for induced and restricted representations of nilpotent Lie groups. Comm. Pure Appl. Math., $41$, $1988$. MR 90b:22011b
  • [4] L. Corwin and F. P. Greenleaf, Representations of nilpotent Lie groups and their applications, Part I. Cambridge Studies in Adv. Math., No $18$, Cambridge Univ. Press, $1989$. MR 92b:22007
  • [5] L. Corwin and F. P. Greenleaf, Commutativity of invariant differential operators on nilpotent homogeneous spaces with finite multiplicity. Comm. Pure Appl. Math., $45$, $1992$. MR 93i:22010
  • [6] L. Corwin and F. P. Greenleaf, Spectral Decomposition of Invariant Differential Operators on Certain Nilpotent Homogeneous Spaces. J. Funct. Analysis, $108$, $1992$. MR 93j:22009
  • [7] M. Duflo, Open Problems in Representation Theory of Lie groups. Conference on ``Analysis on homogeneous spaces", Katata, Japan, $1986$.
  • [8] H. Fujiwara, Sur la conjecture de Corwin-Greenleaf. J. of Lie Theory, $7$, $1997$.
  • [9] F. P. Greenleaf, Harmonic analysis on nilpotent homogeneous spaces. Contemporary Mathematics, $177$, 1994. MR 96e:22025
  • [10] F. P. Greenleaf, Geometry of coadjoint orbits and noncommutativity of invariant differential operators on nilpotent homogeneous spaces. Comm. Pure Appl. Math., $53$, $2000$. CMP 2000:15
  • [11] R. Lipsman, Orbital parameters for induced and restricted representations. Trans. Amer. Math. Soc., $313$, $1989$. MR 90a:22008
  • [12] L. Pukanszky, Leçons sur les représentations des groupes. Monographies de la Société Mathématique de France, No $2$, Dunod, Paris, $1967$. MR 36:311

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 43A85, 22E27, 22E30

Retrieve articles in all journals with MSC (2000): 43A85, 22E27, 22E30


Additional Information

Hidénori Fujiwara
Affiliation: Faculté de Technologie à Kyushu, Université de Kinki, Iizuka 820-8555, Japon
Email: fujiwara@fuk.kindai.ac.jp

Gérard Lion
Affiliation: Equipe Modal’X, Université Paris X, 200 Avenue de la République, 92001 Nanterre, France; Equipe de Théorie des Groupes, Représentations et Applications, Institut de Mathé- matiques de Jussieu, Université Paris VII, 2 Place Jussieu, 75251 Paris Cedex 05, France
Email: glion@math.jussieu.fr

Salah Mehdi
Affiliation: Equipe Modal’X, Université Paris X, 200 Avenue de la République, 92001 Nanterre, France; Equipe de Théorie des Groupes, Représentations et Applications, Institut de Mathé- matiques de Jussieu, Université Paris VII, 2 Place Jussieu, 75251 Paris Cedex 05, France
Address at time of publication: Department of Mathematics, Oklahoma State University, Stillwater, Oklahoma 74078-1058
Email: smehdi@math.okstate.edu

DOI: https://doi.org/10.1090/S0002-9947-01-02850-1
Received by editor(s): March 17, 2000
Published electronically: June 6, 2001
Article copyright: © Copyright 2001 American Mathematical Society

American Mathematical Society