Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Verlinde bundles and generalized theta linear series

Author: Mihnea Popa
Journal: Trans. Amer. Math. Soc. 354 (2002), 1869-1898
MSC (2000): Primary 14H60; Secondary 14J60
Published electronically: November 5, 2001
MathSciNet review: 1881021
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we approach the study of generalized theta linear series on moduli of vector bundles on curves via vector bundle techniques on abelian varieties.

We study a naturally defined class of vector bundles on a Jacobian, called Verlinde bundles, in order to obtain information about duality between theta functions and effective global and normal generation on these moduli spaces.

References [Enhancements On Off] (What's this?)

  • 1. Arnaud Beauville, Vector bundles on curves and generalized theta functions: recent results and open problems, Current topics in complex algebraic geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ., vol. 28, Cambridge Univ. Press, Cambridge, 1995, pp. 17–33. MR 1397056
  • 2. Arnaud Beauville, M. S. Narasimhan, and S. Ramanan, Spectral curves and the generalised theta divisor, J. Reine Angew. Math. 398 (1989), 169–179. MR 998478, 10.1515/crll.1989.398.169
  • 3. V. A. Krasnov, On the degeneration of 𝑀-varieties, Mat. Zametki 59 (1996), no. 3, 396–401, 479 (Russian, with Russian summary); English transl., Math. Notes 59 (1996), no. 3-4, 279–282. MR 1399965, 10.1007/BF02308539
  • 4. Ron Donagi and Loring W. Tu, Theta functions for 𝑆𝐿(𝑛) versus 𝐺𝐿(𝑛), Math. Res. Lett. 1 (1994), no. 3, 345–357. MR 1302649, 10.4310/MRL.1994.v1.n3.a6
  • 5. J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53–94 (French). MR 999313, 10.1007/BF01850655
  • 6. B. van Geemen and E. Izadi, The tangent space to the moduli space of vector bundles on a curve and the singular locus of the theta divisor of the Jacobian, Journal of Alg. Geom. 10 (2001), 133-177 CMP 2001:04
  • 7. Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley & Sons], New York, 1978. Pure and Applied Mathematics. MR 507725
  • 8. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
  • 9. Georg Hein, On the generalized theta divisor, Beiträge Algebra Geom. 38 (1997), no. 1, 95–98. MR 1447988
  • 10. André Hirschowitz, Problèmes de Brill-Noether en rang supérieur, C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 4, 153–156 (French, with English summary). MR 956606
  • 11. Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997. MR 1450870
  • 12. George R. Kempf, Projective coordinate rings of abelian varieties, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 225–235. MR 1463704
  • 13. Shoji Koizumi, Theta relations and projective normality of Abelian varieties, Amer. J. Math. 98 (1976), no. 4, 865–889. MR 0480543
  • 14. Yves Laszlo, À propos de l’espace des modules de fibrés de rang 2 sur une courbe, Math. Ann. 299 (1994), no. 4, 597–608 (French). MR 1286886, 10.1007/BF01459800
  • 15. Robert Lazarsfeld, A sampling of vector bundle techniques in the study of linear series, Lectures on Riemann surfaces (Trieste, 1987) World Sci. Publ., Teaneck, NJ, 1989, pp. 500–559. MR 1082360
  • 16. Joseph Le Potier, Module des fibrés semi-stables et fonctions thêta, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 83–101 (French). MR 1397983
  • 17. Shigeru Mukai, Duality between 𝐷(𝑋) and 𝐷(𝑋) with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175. MR 607081
  • 18. Shigeru Mukai, Fourier functor and its application to the moduli of bundles on an abelian variety, Algebraic geometry, Sendai, 1985, Adv. Stud. Pure Math., vol. 10, North-Holland, Amsterdam, 1987, pp. 515–550. MR 946249
  • 19. D. Mumford, On the equations defining abelian varieties. I, Invent. Math. 1 (1966), 287–354. MR 0204427
  • 20. David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1970. MR 0282985
  • 21. M. S. Narasimhan and S. Ramanan, Generalised Prym varieties as fixed points, J. Indian Math. Soc. (N.S.) 39 (1975), 1–19 (1976). MR 0424819
  • 22. Giuseppe Pareschi, Syzygies of abelian varieties, J. Amer. Math. Soc. 13 (2000), no. 3, 651–664 (electronic). MR 1758758, 10.1090/S0894-0347-00-00335-0
  • 23. Mihnea Popa, On the base locus of the generalized theta divisor, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 6, 507–512 (English, with English and French summaries). MR 1715133, 10.1016/S0764-4442(00)80051-8
  • 24. M. Popa, Dimension estimates for Hilbert schemes and effective base point freeness on moduli spaces of vector bundles on curves, Duke Math. J. 107 (2001), 469-495.
  • 25. Michel Raynaud, Sections des fibrés vectoriels sur une courbe, Bull. Soc. Math. France 110 (1982), no. 1, 103–125 (French, with English summary). MR 662131
  • 26. T. Sekiguchi, On the normal generation by a line bundle on an abelian variety, Proc. Japan Acad. 54 (1978), 185-188 MR 80c:13026

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14H60, 14J60

Retrieve articles in all journals with MSC (2000): 14H60, 14J60

Additional Information

Mihnea Popa
Affiliation: Department of Mathematics, University of Michigan, 525 East University, Ann Arbor, Michigan 48109-1109; Institute of Mathematics of the Romanian Academy, Bucharest, Romania
Address at time of publication: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138

Keywords: Vector bundles, nonabelian theta functions
Received by editor(s): March 1, 2001
Published electronically: November 5, 2001
Article copyright: © Copyright 2001 American Mathematical Society