Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Gaugeability and conditional gaugeability


Author: Zhen-Qing Chen
Journal: Trans. Amer. Math. Soc. 354 (2002), 4639-4679
MSC (2000): Primary 60J45, 60J57; Secondary 35J10, 35S05, 47J20, 60J35
DOI: https://doi.org/10.1090/S0002-9947-02-03059-3
Published electronically: July 2, 2002
MathSciNet review: 1926893
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: New Kato classes are introduced for general transient Borel right processes, for which gauge and conditional gauge theorems hold. These new classes are the genuine extensions of the Green-tight measures in the classical Brownian motion case. However, the main focus of this paper is on establishing various equivalent conditions and consequences of gaugeability and conditional gaugeability. We show that gaugeability, conditional gaugeability and the subcriticality for the associated Schrödinger operators are equivalent for transient Borel right processes with strong duals. Analytic characterizations of gaugeability and conditional gaugeability are given for general symmetric Markov processes. These analytic characterizations are very useful in determining whether a process perturbed by a potential is gaugeable or conditionally gaugeable in concrete cases. Connections with the positivity of the spectral radii of the associated Schrödinger operators are also established.


References [Enhancements On Off] (What's this?)

  • 1. M. Aizenman and B. Simon, Brownian motion and Harnack inequality for Schrödinger operators. Comm. Pure Appl. Math. 35 (1982), 209-273. MR 84a:35062
  • 2. A. B. Amor and W. Hansen, Continuity of eigenvalues for Schrödinger operators, $L^p$-properties of Kato type integral operators, Math. Ann. 321 (2001), 925-953.
  • 3. A. Benveniste and J. Jacod, Systèmes de Lévy des processus de Markov. Invent. Math. 21 (1973), 183-198. MR 49:8117
  • 4. R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory. Academic Press, New York, 1968. MR 41:9348
  • 5. Z.-Q. Chen, Z.-M. Ma, and M. Röckner, Quasi-homeomorphisms of Dirichlet forms. Nagoya Math. J. 136 (1994), 1-15. MR 95m:31020
  • 6. Z.-Q. Chen and R. Song,
    Estimates on Green functions and Poisson kernels of symmetric stable processes.
    Math. Ann. 312 (1998), 465-601. MR 2000b:60179
  • 7. Z.-Q. Chen and R. Song,
    Intrinsic ultracontractivity and conditional gauge for symmetric stable processes.
    J. Funct. Anal. 150 (1997), 204-239. MR 98j:60103
  • 8. Z.-Q. Chen and R. Song, General gauge and conditional gauge theorems. Preprint, 2000. To appear in Ann. Probab.
  • 9. Z.-Q. Chen and R. Song, Conditional gauge theorem for non-local Feynman-Kac transforms. Preprint, 2001. To appear in Probab. Theory Related Fields.
  • 10. Z.-Q. Chen and R. Song, Drift transforms and Green function estimates for discontinuous processes. Preprint, 2001.
  • 11. K. L. Chung and K. M. Rao, Feynman-Kac functional and the Schrödinger equation. In Seminar on stochastic processes, pp. 1-29, Boston, 1981. Birkhäuser. MR 83g:60089
  • 12. K. L. Chung and K. M. Rao, General gauge theorem for multiplicative functionals. Trans. Amer. Math. Soc. 306 (1988), 819-836. MR 89d:60136
  • 13. K. L. Chung and Z. Zhao,
    From Brownian motion to Schrödinger's Equation.
    Springer, Berlin, 1995. MR 96f:60140
  • 14. M. Cranston, E. Fabes and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator. Trans. Amer. Math. Soc., 307 (1988), 174-194. MR 90a:60135
  • 15. C. Dellacherie and P.-A. Meyer, Probabilités et Potentiel, Chapites V à VIII. Hermann, 1980. MR 82b:60001
  • 16. C. Doléans-Dade, Quelques applications de la formule de changement de variables pour les semimartingales. Z. Wahrsch. 16 (1970), 181-194. MR 44:1113
  • 17. P. J. Fitzsimmons, On the excursions of Markov processes in classical duality. Probab. Theory Related Fields, 75 (1987) 159-178. MR 88g:60174
  • 18. P. J. Fitzsimmons, Time changes of symmetric Markov processes and a Feynman-Kac formula. J. Theoret. Probab. 2 (1989), 487-501. MR 91h:60076
  • 19. P. J. Fitzsimmons and R. K. Getoor, Revuz measures and time changes. Math. Z. 199 (1988), 233-256. MR 89h:60124
  • 20. P. J. Fitzsimmons and R. K. Getoor, Smooth measures and continuous additive functionals of right Markov processes. In ``Ito's Stochastic Calculus and Probability Theory", N. Ikeda, S. Watanabe, M. Fukushima and H. Kunita (eds.) Springer-Verlag, Tokyo, 1996. MR 98g:60137
  • 21. G. B. Folland, Real Analysis. John Wiley and Sons, Inc. 1984. MR 86k:28001
  • 22. M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes. Walter de Gruyter, Berlin, 1994. MR 96f:60126
  • 23. R. K. Getoor, Transience and recurrence of Markov processes. In Séminaire de Probabilités XIV, Lect. Notes Math. 784 (1980), 397-409. MR 82c:60131
  • 24. R. K. Getoor, Measure perturbations of Markov semigroups. Potential Analysis, 11 (1999), 101-133. MR 2001c:60119
  • 25. R. K. Getoor and J. Glover, Riesz decompositions in Markov process theory. Trans. Amer. Math. Soc. 285 (1984), 107-132. MR 86b:60128
  • 26. T. Kulczycki, Properties of Green function of symmetric stable processes. Probab. Math. Stat., 17(2) (1997), 339-364. MR 98m:60119
  • 27. H. Kunita and T. Watanabe, Notes on transformations of Markov processes connected with multiplicative functionals. Mem. Fac. Sci. Kyushu Univ. Ser. A 17 (1963), 181-191. MR 29:661
  • 28. Z.-M. Ma and M. Röckner, Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer-Verlag, Berlin, 1992. MR 94d:60119
  • 29. P. A. Meyer, Note sur l'interpretation des mesures d'equilibre. Seminaire de Probabilités VII, Lect. Notes Math. 321 (1973), 210-216. MR 51:9232
  • 30. Y. Pinchover, Criticality and ground states for second-order elliptic equations. J. Differential Equations 80 (1989), 237-250. MR 91c:35046
  • 31. D. Revuz, Mesures associés aux fonctionelles additives de Markov, I. Trans. Amer. Math. Soc. 148 (1970), 501-531. MR 43:5611
  • 32. S. Sato, An inequality for the spectral radius of Markov processes, Kodai Math. J. 8, (1985) 5-13. MR 86h:60144
  • 33. M. Sharpe, General Theory of Markov Processes, Academic Press, Boston, 1988. MR 89m:60169
  • 34. M. L. Silverstein, The sector condition implies that semipolar sets are quasi-polar. Z. Wahrsch. 41 (1977), 13-33. MR 57:7784
  • 35. B. Simon, Schrödinger semigroups. Bull. Amer. Math. Soc. 7 (1982), 447-526. MR 86b:81001a
  • 36. P. Stollmann and J. Voigt, Perturbation of Dirichlet forms by measures. Potential Anal. 5 (1996), 109-138. MR 97e:47065
  • 37. W. Stummer and K.-Th Sturm, On exponentials of additive functionals. Stochastic Process. Appl. 85 (2000), 45-60. MR 2001b:60093
  • 38. K.-Th Sturm, Gauge theorems for resolvents with application to Markov processes. Probab. Theory Related Fields 89 (1991), 387-406. MR 93d:60119
  • 39. M. Takeda, Exponential decay of lifetimes and a theorem of Kac on total occupation times. Potential Analysis, 11 (1999), 235-247. MR 2000i:60084
  • 40. M. Takeda, Conditional gaugeability and subcriticality of generalized Schrödinger operators. Preprint, 2001. To appear in J. Funct. Anal.
  • 41. J. Ying, Dirichlet forms perturbed by additive functionals of extended Kato class. Osaka J. Math. 34 (1997), 933-952. MR 99e:60173
  • 42. Z. Zhao, A probabilistic principle and generalized Schrödinger perturbation. J. Funct. Anal., 101 (1991), 162-176. MR 93f:60116
  • 43. Z. Zhao, Subcriticality and gaugeability of the Schrödinger operator. Trans. Amer. Math. Soc. 334 (1992), 75-96. MR 93a:81041

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 60J45, 60J57, 35J10, 35S05, 47J20, 60J35

Retrieve articles in all journals with MSC (2000): 60J45, 60J57, 35J10, 35S05, 47J20, 60J35


Additional Information

Zhen-Qing Chen
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
Email: zchen@math.washington.edu

DOI: https://doi.org/10.1090/S0002-9947-02-03059-3
Keywords: Green function, $h$-transform, conditional Markov process, lifetime, time change, Kato class, Feynman-Kac transform, Schr\"odinger semigroup, Stieltjes exponential, non-local perturbation, spectral radius, gauge theorem, conditional gauge theorem, super gauge theorem, super conditional gauge theorem, subcriticality, bilinear form
Received by editor(s): August 12, 2001
Received by editor(s) in revised form: February 7, 2002
Published electronically: July 2, 2002
Additional Notes: The research of this author is supported in part by NSF Grant DMS-0071486
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society