Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Remote Access
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

The space $H^1$ for nondoubling measures in terms of a grand maximal operator


Author: Xavier Tolsa
Journal: Trans. Amer. Math. Soc. 355 (2003), 315-348
MSC (2000): Primary 42B20; Secondary 42B30
Published electronically: September 11, 2002
MathSciNet review: 1928090
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\mu$ be a Radon measure on $\mathbb{R} ^d$, which may be nondoubling. The only condition that $\mu$ must satisfy is the size condition $\mu(B(x,r))\leq C\,r^n$, for some fixed $0<n\leq d$. Recently, some spaces of type $BMO(\mu)$ and $H^1(\mu)$ were introduced by the author. These new spaces have properties similar to those of the classical spaces ${B\!M\!O}$ and $H^1$defined for doubling measures, and they have proved to be useful for studying the $L^p(\mu)$ boundedness of Calderón-Zygmund operators without assuming doubling conditions. In this paper a characterization of the new atomic Hardy space $H^1(\mu)$ in terms of a maximal operator $M_\Phi$ is given. It is shown that $f$ belongs to $H^1(\mu)$ if and only if $f\in L^1(\mu)$, $\int f\, d\mu=0$ and $M_\Phi f \in L^1(\mu)$, as in the usual doubling situation.


References [Enhancements On Off] (What's this?)

  • [Ca] L. Carleson. Two remarks on $H^1$ and $BMO$, Advances in Math. 22 (1976), 269-277. MR 57:16602
  • [Co] R. R. Coifman. A real variable characterization of $H^p$, Studia Math. 51 (1974) 269-274. MR 50:10784
  • [CW] R. R. Coifman and G. Weiss. Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 56:6264
  • [GR] J. García-Cuerva and J. L. Rubio de Francia. Weighted norm inequalities and related topics, North-Holland Math. Studies 116, 1985. MR 87d:42023
  • [Jo] J.-L. Journé. Calderón-Zygmund operators, pseudo-differential operators and the Cauchy integral of Calderón. Lecture Notes in Math. 994, Springer-Verlag, 1983. MR 85i:42021
  • [La] R. H. Latter. A characterization of $H^p({\mathbb R}^n)$ in terms of atoms, Studia Math. 62 1978, 92-101. MR 58:2198
  • [MS1] R. A. Macías and C. Segovia. Lipschitz functions on spaces of homogeneous type, Advances in Math. 33 (1979), 257-270. MR 81c:32017a
  • [MS2] R. A. Macías and C. Segovia. A decomposition into atoms of distributions on spaces of homogeneous type, Advances in Math. 33 (1979), 271-309. MR 81c:32017b
  • [MMNO] J. Mateu, P. Mattila, A. Nicolau, and J. Orobitg. ${B\!M\!O}$ for nondoubling measures. Duke Math. J. 102 (2000), 533-565. MR 2001e:26019
  • [NTV1] F. Nazarov, S. Treil, and A. Volberg. Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, Internat. Math. Res. Not. 15 (1997), 703-726. MR 99e:42028
  • [NTV2] F. Nazarov, S. Treil, and A. Volberg. Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators in nonhomogeneous spaces, Internat. Math. Res. Not. 9 (1998), 463-487. MR 99f:42035
  • [NTV3] F. Nazarov, S. Treil, and A. Volberg. $Tb$-theorem on non-homogeneous spaces. Preprint (1999).
  • [NTV4] F. Nazarov, S. Treil, and A. Volberg. Accretive $Tb$-systems on non-homogeneous spaces, Duke Math J. 113 (2002), 259-312.
  • [OP] J. Orobitg and C. Pérez. $A_p$ weights for nondoubling measures in ${\mathbb R}^n$ and applications. Trans. Amer. Math. Soc. 354 (2002), 2013-2033.
  • [St] E. M. Stein. Harmonic analysis. Real-Variable methods, orthogonality, and oscillatory integrals. Princeton Univ. Press. Princeton, N.J., 1993. MR 95c:42002
  • [To1] X. Tolsa. $L^2$-boundedness of the Cauchy integral operator for continuous measures, Duke Math. J. 98:2 (1999), 269-304. MR 2000d:31001
  • [To2] X. Tolsa. A $T(1)$ theorem for non doubling measures with atoms. Proc. London Math. Soc. 82 (2001), 195-228.
  • [To3] X. Tolsa. ${B\!M\!O}$, $H^1$, and Calderón-Zygmund operators for non doubling measures. Math. Ann. 319 (2001), 89-149. MR 2002c:42029
  • [To4] X. Tolsa. A proof of the weak $(1,1)$ inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition. Publ. Mat. 45 (2001), 163-174. MR 2002d:42019
  • [To5] X. Tolsa. Characterización of the atomic space $H^1$ for non doubling measures in terms of a grand maximal operator. Chalmers Univ. of Technology, Mathematics, Preprint 2000:2. http://www.math.chalmers.se/Math/Research/Preprints/.
  • [Ve] J. Verdera, On the $T(1)$ theorem for the Cauchy integral, Arkiv Mat. 38 (2000), 183-199. MR 2001e:30074
  • [Uc] A. Uchiyama. A maximal function characterization of $H^p$ on the space of homogeneous type, Trans. Amer. Math. Soc. 262:2, (1980), 579-592. MR 81j:46085

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 42B20, 42B30

Retrieve articles in all journals with MSC (2000): 42B20, 42B30


Additional Information

Xavier Tolsa
Affiliation: Département de Mathématique, Bâtiment 425, Université de Paris-Sud, 91405 Orsay-Cedex, France
Address at time of publication: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Email: xtolsa@mat.uab.es

DOI: http://dx.doi.org/10.1090/S0002-9947-02-03131-8
PII: S 0002-9947(02)03131-8
Keywords: BMO, atomic spaces, Hardy spaces, Calder\'on-Zygmund operators, nondoubling measures, maximal functions, grand maximal operator
Received by editor(s): October 31, 2000
Published electronically: September 11, 2002
Additional Notes: Supported by a postdoctoral grant from the European Commission for the TMR Network “Harmonic Analysis”. Also partially supported by grants DGICYT PB96-1183 and CIRIT 1998-SGR00052 (Spain)
Article copyright: © Copyright 2002 American Mathematical Society



Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia