Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Estimations $L^p$ des solutions de l'équation des ondes sur certaines variétés coniques


Authors: Hong-Quan Li and Noël Lohoue
Journal: Trans. Amer. Math. Soc. 355 (2003), 689-711
MSC (2000): Primary 35B45; Secondary 35L15, 58J45
DOI: https://doi.org/10.1090/S0002-9947-02-03130-6
Published electronically: October 4, 2002
MathSciNet review: 1932721
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove R. Strichartz's $L^p$ estimates for solutions of the wave equation on some conical manifolds. RÉSUMÉ. On prouve des estimations $L^p$ pour les solutions de l'équation des ondes, analogues aux estimations de R. Strichartz, sur certaines variétés coniques.


References [Enhancements On Off] (What's this?)

  • 1. R. M. Beals, $L^p$ boundedness of Fourier integral operator, Mem. Amer. Math. Soc. 38, 1982. MR 84m:42026
  • 2. P. Bérard, On the Wave Equation on a Compact Riemannian Manifold without Conjugate Points, Math. Z., 155, 249-276, 1977. MR 56:13295
  • 3. P. Bérard, Riesz Means of Riemannian Manifolds, in Proceedings Sympos. Pure Mathematics, $n^0$ 36, 1-12, 1980. MR 81f:58038
  • 4. J. Cheeger and M. E. Taylor, On the diffraction of waves by conical singularities. I, Comm. Pure Appl. Math. XXXV (1982) 275-331. MR 84h:35091a
  • 5. I. M. Gel'fand and G. Shilov, Generalized Functions I, Academic Press, New York and London, 1964. MR 29:3869
  • 6. L. Hörmander, The Analysis of Linear Partial Differential Operators III : Pseudodifferential Operators, Springer-Verlag, Berlin, Heidelberg, 1985. MR 87d:35002a
  • 7. N. Lohoué, Sur les estimées $L^p$ de l'équation des ondes, C. R. Acad. Sci. Paris Sér. I. Math., 321, I, 1171-1176, 1995. MR 97h:35021
  • 8. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, Berlin, Heidelberg, 1966. MR 38:1291
  • 9. A. Miyachi, On some estimates for the wave equation in $L^p$ and $H^p$, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27, 331-354, 1980. MR 83g:35060
  • 10. J. C. Peral, $L^p$ estimates for the wave equation, J. Funct. Anal. 36, 114-145, 1980. MR 81k:35089
  • 11. M. Riesz, L'intégrale de Riemann-Liouville et le problème de Cauchy, Acta Mathematica, 81, 1-223, 1949. MR 10:713c
  • 12. E. M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc., 83, 482-492, 1956. MR 18:575d
  • 13. R. Strichartz, Convolutions with Kernels having Singularites on a Sphere, Trans. Amer. Math. Soc., 148, 461-471, 1970. MR 41:876
  • 14. Michael E. Taylor, Noncommutative Harmonic Analysis, Mathematical Surveys and Monographs, Vol. 22, American Mathematical Society, Providence, R. I., 1986. MR 88a:22021
  • 15. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1944. MR 6:64a

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35B45, 35L15, 58J45

Retrieve articles in all journals with MSC (2000): 35B45, 35L15, 58J45


Additional Information

Hong-Quan Li
Affiliation: Inst. Hautes Études Sci. - Le Bois-Marie, 35, Route de Chartres, F-91440 Bures-Sur-Yvette Cedex, France
Email: lihq@ihes.fr

Noël Lohoue
Affiliation: Département de Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay Cedex, France
Email: Noel.LOHOUE@math.u-psud.fr

DOI: https://doi.org/10.1090/S0002-9947-02-03130-6
Keywords: Op\'erateur d'onde, vari\'et\'es coniques
Received by editor(s): October 20, 1998
Published electronically: October 4, 2002
Article copyright: © Copyright 2002 American Mathematical Society

American Mathematical Society