Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

The Mori cones of moduli spaces of pointed curves of small genus


Authors: Gavril Farkas and Angela Gibney
Journal: Trans. Amer. Math. Soc. 355 (2003), 1183-1199
MSC (2000): Primary 14H10
Published electronically: November 7, 2002
MathSciNet review: 1938752
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the Mori cones of the moduli spaces $\overline M_{g,n}$ of $n$pointed stable curves of genus $g$, when $g$ and $n$ are relatively small. For instance we show that for $g<14$ every curve in $\overline M_g$ is equivalent to an effective combination of the components of the locus of curves with $3g-4$ nodes. We completely describe the cone of nef divisors for the space $ \overline M_{0,6}$, thus verifying Fulton's conjecture for this space. Using this description we obtain a classification of all the fibrations of $\overline M_{0,6}$.


References [Enhancements On Off] (What's this?)

  • [AC] Enrico Arbarello and Maurizio Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 97–127 (1999). MR 1733327
  • [Fa1] Carel Faber, Intersection-theoretical computations on \overline{ℳ}_{ℊ}, Parameter spaces (Warsaw, 1994) Banach Center Publ., vol. 36, Polish Acad. Sci., Warsaw, 1996, pp. 71–81. MR 1481481
  • [Fa2] C. Faber, The nef cone of ${\overline{\mathnormal{M}}}_{0,6}$: a proof by inequalities only, preprint.
  • [G] A. Gibney, Fibrations of ${\overline{\mathnormal{M}}}_{g,n}$, Ph.D. Thesis, University of Texas, 2000.
  • [GKM] A. Gibney, S. Keel, I. Morrison, Towards the ample cone of ${\overline{\mathnormal{M}}}_{g,n}$, J. Amer. Math. Soc. 15(2002), 273-294.
  • [HT] B. Hassett, Y. Tschinkel, On the effective cone of the moduli space of pointed rational curves, math.AG/0110231.
  • [H] Bruce Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Mathematics, vol. 1637, Springer-Verlag, Berlin, 1996. MR 1438547
  • [HMo] Joe Harris and Ian Morrison, Moduli of curves, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR 1631825
  • [Kap] M. M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space \overline𝑀_{0,𝑛}, J. Algebraic Geom. 2 (1993), no. 2, 239–262. MR 1203685
  • [Ke] Sean Keel, Intersection theory of moduli space of stable 𝑛-pointed curves of genus zero, Trans. Amer. Math. Soc. 330 (1992), no. 2, 545–574. MR 1034665, 10.1090/S0002-9947-1992-1034665-0
  • [KMcK] S. Keel, J. McKernan, Contractible extremal rays on ${\overline{\mathnormal{M}}}_{0,n}$, math.AG/9607009.
  • [K] János Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR 1440180
  • [Ve] P. Vermeire, A counterexample to Fulton's conjecture on ${\overline{\mathnormal{M}}}_{0,n}$, J. of Algebra 248(2002), 780-784.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14H10

Retrieve articles in all journals with MSC (2000): 14H10


Additional Information

Gavril Farkas
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
Email: gfarkas@umich.edu

Angela Gibney
Affiliation: Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
Email: agibney@umich.edu

DOI: https://doi.org/10.1090/S0002-9947-02-03165-3
Received by editor(s): February 25, 2002
Published electronically: November 7, 2002
Article copyright: © Copyright 2002 American Mathematical Society