The Mori cones of moduli spaces of pointed curves of small genus
Authors:
Gavril Farkas and Angela Gibney
Journal:
Trans. Amer. Math. Soc. 355 (2003), 11831199
MSC (2000):
Primary 14H10
Published electronically:
November 7, 2002
MathSciNet review:
1938752
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We compute the Mori cones of the moduli spaces of pointed stable curves of genus , when and are relatively small. For instance we show that for every curve in is equivalent to an effective combination of the components of the locus of curves with nodes. We completely describe the cone of nef divisors for the space , thus verifying Fulton's conjecture for this space. Using this description we obtain a classification of all the fibrations of .
 [AC]
E. Arbarello, M. Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Études Sci. Publ. Math. No. 88(1998), 97127. MR 2001h:14030
 [Fa1]
C. Faber, Intersectiontheoretical computations on , Parameter Spaces (Warsaw 1994), 7181, Banach Center Publ. 36, 1996. MR 98j:14033
 [Fa2]
C. Faber, The nef cone of : a proof by inequalities only, preprint.
 [G]
A. Gibney, Fibrations of , Ph.D. Thesis, University of Texas, 2000.
 [GKM]
A. Gibney, S. Keel, I. Morrison, Towards the ample cone of , J. Amer. Math. Soc. 15(2002), 273294.
 [HT]
B. Hassett, Y. Tschinkel, On the effective cone of the moduli space of pointed rational curves, math.AG/0110231.
 [H]
B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Mathematics 1637, Springer 1996. MR 98c:14033
 [HMo]
J. Harris, I. Morrison, Moduli of curves, Springer, 1998. MR 99g:14031
 [Kap]
M. Kapranov, Veronese curves and the GrothendieckKnudsen moduli space , J. of Algebraic Geometry, 2 (1993), 239262. MR 94a:14024
 [Ke]
S. Keel, Intersection theory on moduli spaces of pointed curves of genus zero, Trans. Amer. Math. Soc. 330(1992), 545574. MR 92f:14003
 [KMcK]
S. Keel, J. McKernan, Contractible extremal rays on , math.AG/9607009.
 [K]
J. Kollár, Rational curves on algebraic varieties, Springer 1996. MR 98c:14001
 [Ve]
P. Vermeire, A counterexample to Fulton's conjecture on , J. of Algebra 248(2002), 780784.
 [AC]
 E. Arbarello, M. Cornalba, Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Études Sci. Publ. Math. No. 88(1998), 97127. MR 2001h:14030
 [Fa1]
 C. Faber, Intersectiontheoretical computations on , Parameter Spaces (Warsaw 1994), 7181, Banach Center Publ. 36, 1996. MR 98j:14033
 [Fa2]
 C. Faber, The nef cone of : a proof by inequalities only, preprint.
 [G]
 A. Gibney, Fibrations of , Ph.D. Thesis, University of Texas, 2000.
 [GKM]
 A. Gibney, S. Keel, I. Morrison, Towards the ample cone of , J. Amer. Math. Soc. 15(2002), 273294.
 [HT]
 B. Hassett, Y. Tschinkel, On the effective cone of the moduli space of pointed rational curves, math.AG/0110231.
 [H]
 B. Hunt, The geometry of some special arithmetic quotients, Lecture Notes in Mathematics 1637, Springer 1996. MR 98c:14033
 [HMo]
 J. Harris, I. Morrison, Moduli of curves, Springer, 1998. MR 99g:14031
 [Kap]
 M. Kapranov, Veronese curves and the GrothendieckKnudsen moduli space , J. of Algebraic Geometry, 2 (1993), 239262. MR 94a:14024
 [Ke]
 S. Keel, Intersection theory on moduli spaces of pointed curves of genus zero, Trans. Amer. Math. Soc. 330(1992), 545574. MR 92f:14003
 [KMcK]
 S. Keel, J. McKernan, Contractible extremal rays on , math.AG/9607009.
 [K]
 J. Kollár, Rational curves on algebraic varieties, Springer 1996. MR 98c:14001
 [Ve]
 P. Vermeire, A counterexample to Fulton's conjecture on , J. of Algebra 248(2002), 780784.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
14H10
Retrieve articles in all journals
with MSC (2000):
14H10
Additional Information
Gavril Farkas
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 481091109
Email:
gfarkas@umich.edu
Angela Gibney
Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 481091109
Email:
agibney@umich.edu
DOI:
http://dx.doi.org/10.1090/S0002994702031653
PII:
S 00029947(02)031653
Received by editor(s):
February 25, 2002
Published electronically:
November 7, 2002
Article copyright:
© Copyright 2002
American Mathematical Society
