The Mori cones of moduli spaces of pointed curves of small genus

Authors:
Gavril Farkas and Angela Gibney

Journal:
Trans. Amer. Math. Soc. **355** (2003), 1183-1199

MSC (2000):
Primary 14H10

DOI:
https://doi.org/10.1090/S0002-9947-02-03165-3

Published electronically:
November 7, 2002

MathSciNet review:
1938752

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We compute the Mori cones of the moduli spaces of pointed stable curves of genus , when and are relatively small. For instance we show that for every curve in is equivalent to an effective combination of the components of the locus of curves with nodes. We completely describe the cone of nef divisors for the space , thus verifying Fulton's conjecture for this space. Using this description we obtain a classification of all the fibrations of .

**[AC]**Enrico Arbarello and Maurizio Cornalba,*Calculating cohomology groups of moduli spaces of curves via algebraic geometry*, Inst. Hautes Études Sci. Publ. Math.**88**(1998), 97–127 (1999). MR**1733327****[Fa1]**Carel Faber,*Intersection-theoretical computations on \overline{ℳ}_{ℊ}*, Parameter spaces (Warsaw, 1994) Banach Center Publ., vol. 36, Polish Acad. Sci. Inst. Math., Warsaw, 1996, pp. 71–81. MR**1481481****[Fa2]**C. Faber,*The nef cone of : a proof by inequalities only,*preprint.**[G]**A. Gibney,*Fibrations of*, Ph.D. Thesis, University of Texas, 2000.**[GKM]**A. Gibney, S. Keel, I. Morrison,*Towards the ample cone of*, J. Amer. Math. Soc. 15(2002), 273-294.**[HT]**B. Hassett, Y. Tschinkel,*On the effective cone of the moduli space of pointed rational curves*, math.AG/0110231.**[H]**Bruce Hunt,*The geometry of some special arithmetic quotients*, Lecture Notes in Mathematics, vol. 1637, Springer-Verlag, Berlin, 1996. MR**1438547****[HMo]**Joe Harris and Ian Morrison,*Moduli of curves*, Graduate Texts in Mathematics, vol. 187, Springer-Verlag, New York, 1998. MR**1631825****[Kap]**M. M. Kapranov,*Veronese curves and Grothendieck-Knudsen moduli space \overline𝑀_{0,𝑛}*, J. Algebraic Geom.**2**(1993), no. 2, 239–262. MR**1203685****[Ke]**Sean Keel,*Intersection theory of moduli space of stable 𝑛-pointed curves of genus zero*, Trans. Amer. Math. Soc.**330**(1992), no. 2, 545–574. MR**1034665**, https://doi.org/10.1090/S0002-9947-1992-1034665-0**[KMcK]**S. Keel, J. McKernan,*Contractible extremal rays on ,*math.AG/9607009.**[K]**János Kollár,*Rational curves on algebraic varieties*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996. MR**1440180****[Ve]**P. Vermeire,*A counterexample to Fulton's conjecture on*, J. of Algebra 248(2002), 780-784.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
14H10

Retrieve articles in all journals with MSC (2000): 14H10

Additional Information

**Gavril Farkas**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109

Email:
gfarkas@umich.edu

**Angela Gibney**

Affiliation:
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109

Email:
agibney@umich.edu

DOI:
https://doi.org/10.1090/S0002-9947-02-03165-3

Received by editor(s):
February 25, 2002

Published electronically:
November 7, 2002

Article copyright:
© Copyright 2002
American Mathematical Society