The two-by-two spectral Nevanlinna-Pick problem

Authors:
Jim Agler and N. J. Young

Journal:
Trans. Amer. Math. Soc. **356** (2004), 573-585

MSC (2000):
Primary 30E05

DOI:
https://doi.org/10.1090/S0002-9947-03-03083-6

Published electronically:
September 22, 2003

MathSciNet review:
2022711

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a criterion for the existence of an analytic matrix-valued function on the disc satisfying a finite set of interpolation conditions and having spectral radius bounded by . We also give a realization theorem for analytic functions from the disc to the symmetrised bidisc.

**1.**J. Agler, F. B. Yeh and N. J. Young, The symmetrised bidisc, complex geodesics and realizations, to appear in Reproducing Kernel Hilbert Spaces, Positivity, Function Theory, System Theory and Related Topics, D. Alpay, ed., Birkhäuser OT series.**2.**J. Agler and N. J. Young,*A Schwarz lemma for the symmetrized bidisc*, Bull. London Math. Soc.**33**(2001), no. 2, 175–186. MR**1815421**, https://doi.org/10.1112/blms/33.2.175**3.**J. Agler and N. J. Young,*The two-point spectral Nevanlinna-Pick problem*, Integral Equations Operator Theory**37**(2000), no. 4, 375–385. MR**1780117**, https://doi.org/10.1007/BF01192826**4.**Joseph A. Ball, Israel Gohberg, and Leiba Rodman,*Interpolation of rational matrix functions*, Operator Theory: Advances and Applications, vol. 45, Birkhäuser Verlag, Basel, 1990. MR**1083145****5.**J. A. Ball and N. J. Young,*Problems on the realization of functions*, Operator theory and its applications (Winnipeg, MB, 1998) Fields Inst. Commun., vol. 25, Amer. Math. Soc., Providence, RI, 2000, pp. 179–185. MR**1759542****6.**Hari Bercovici, Ciprian Foias, and Allen Tannenbaum,*A spectral commutant lifting theorem*, Trans. Amer. Math. Soc.**325**(1991), no. 2, 741–763. MR**1000144**, https://doi.org/10.1090/S0002-9947-1991-1000144-9**7.**H. Bercovici, C. Foias, and A. Tannenbaum,*Spectral variants of the Nevanlinna-Pick interpolation problem*, Signal processing, scattering and operator theory, and numerical methods (Amsterdam, 1989) Progr. Systems Control Theory, vol. 5, Birkhäuser Boston, Boston, MA, 1990, pp. 23–45. MR**1115441****8.**Hari Bercovici, Ciprian Foias, and Allen Tannenbaum,*The structured singular value for linear input/output operators*, SIAM J. Control Optim.**34**(1996), no. 4, 1392–1404. MR**1395840**, https://doi.org/10.1137/S0363012994268825**9.**Hari Bercovici, Ciprian Foias, and Allen Tannenbaum,*On the structured singular value for operators on Hilbert space*, Feedback control, nonlinear systems, and complexity (Montreal, PQ, 1994) Lect. Notes Control Inf. Sci., vol. 202, Springer, London, 1995, pp. 11–23. MR**1326150**, https://doi.org/10.1007/BFb0027667**10.**John Doyle,*Analysis of feedback systems with structured uncertainties*, Proc. IEE-D**129**(1982), no. 6, 242–250. MR**685109****11.**A. Packard and J. Doyle,*The complex structured singular value*, Automatica J. IFAC**29**(1993), no. 1, 71–109. MR**1200542**, https://doi.org/10.1016/0005-1098(93)90175-S**12.**Peter L. Duren,*Theory of 𝐻^{𝑝} spaces*, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR**0268655****13.**Avraham Feintuch and Alexander Markus,*The structured norm of a Hilbert space operator with respect to a given algebra of operators*, Operator theory and interpolation (Bloomington, IN, 1996) Oper. Theory Adv. Appl., vol. 115, Birkhäuser, Basel, 2000, pp. 163–183. MR**1766812****14.***Matlab*-*Analysis and Synthesis Toolbox*, The Math Works Inc., Natick, Massachusetts (http://www.mathworks.com/products/muanalysis/).**15.**Abdelkrim Nokrane and Thomas Ransford,*Schwarz’s lemma for algebroid multifunctions*, Complex Variables Theory Appl.**45**(2001), no. 2, 183–196. MR**1909433****16.**Srdjan Petrovic,*An extremal problem in interpolation theory*, Houston J. Math.**26**(2000), no. 1, 165–181. MR**1814733****17.**I. Schur,*On power series which are bounded in the interior of the unit circle. I, II*, I. Schur methods in operator theory and signal processing, Oper. Theory Adv. Appl., vol. 18, Birkhäuser, Basel, 1986, pp. 31–59, 61–88. Translated from the German. MR**902602**, https://doi.org/10.1007/978-3-0348-5483-2_3**18.**Béla Sz.-Nagy and Ciprian Foiaş,*Harmonic analysis of operators on Hilbert space*, Translated from the French and revised, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. MR**0275190****19.**J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Third edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR**0218587**

J. L. Walsh,*Interpolation and approximation by rational functions in the complex domain*, Fourth edition. American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1965. MR**0218588**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
30E05

Retrieve articles in all journals with MSC (2000): 30E05

Additional Information

**Jim Agler**

Affiliation:
Department of Mathematics, University of California at San Diego, La Jolla, California 92093

**N. J. Young**

Affiliation:
School of Mathematics and Statistics, University of Newcastle upon Tyne, Merz Court, Newcastle upon Tyne NE1 7RU, England

DOI:
https://doi.org/10.1090/S0002-9947-03-03083-6

Received by editor(s):
October 9, 2001

Received by editor(s) in revised form:
February 26, 2002

Published electronically:
September 22, 2003

Additional Notes:
This research was supported by an NSF grant in Modern Analysis and an EPSRC Visiting Fellowship

Article copyright:
© Copyright 2003
American Mathematical Society