Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Chern numbers of ample vector bundles on toric surfaces

Authors: Sandra Di Rocco and Andrew J. Sommese
Journal: Trans. Amer. Math. Soc. 356 (2004), 587-598
MSC (2000): Primary 14J60, 14M25; Secondary 14J25
Published electronically: September 22, 2003
MathSciNet review: 2022712
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This article shows a number of strong inequalities that hold for the Chern numbers $c_1^2$, $c_2$ of any ample vector bundle $\mathcal{E}$ of rank $r$ on a smooth toric projective surface, $S$, whose topological Euler characteristic is $e(S)$. One general lower bound for $c_1^2$ proven in this article has leading term $(4r+2)e(S)\ln_2\left(\tfrac{e(S)}{12}\right)$. Using Bogomolov instability, strong lower bounds for $c_2$ are also given. Using the new inequalities, the exceptions to the lower bounds $c_1^2> 4e(S)$ and $c_2>e(S)$ are classified.

References [Enhancements On Off] (What's this?)

  • [BL89] A. Biancofiore and E.L. Livorni, On the iteration of the adjunction process for surfaces of negative Kodaira dimension, Manuscripta Math. 64 (1989), 35-54. MR 90c:14004
  • [BSS94] M. Beltrametti, M. Schneider, and A.J. Sommese, Applications of the Ein-Lazarsfeld criterion for spannedness of adjoint bundles, Math. Z. 214 (1993), 593-599. MR 94k:14004
  • [BSS96] M. Beltrametti, M. Schneider, and A.J. Sommese, Chern inequalities and spannedness of the adjoint bundle, Proceedings of the Hirzebruch 65 conference at Bar-Ilan University, ed. by M. Teicher, Israel Mathematical Conf. Proc. 9 (1996), 97-107, American Mathematical Society, Providence, Rhode Island. MR 96j:14029
  • [BS95] M. Beltrametti and A.J. Sommese, The Adjunction Theory of Complex Projective Varieties, Expositions in Mathematics, 16 (1995), Walter De Gruyter, Berlin. MR 96f:14004
  • [F90] T. Fujita, Classification Theories of Polarized Varieties, London Math. Soc. Lect. Notes Ser. 155 (1990). MR 93e:14009
  • [L82] D.I. Lieberman, Holomorphic vector fields and rationality, in Group actions and vector fields (Vancouver, B.C., 1981), 99-117, Lecture Notes in Math., 956, Springer, Berlin-New York, 1982. MR 85b:53074
  • [O88] T. Oda, Convex Bodies and Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], 15. Springer-Verlag, Berlin-New York, 1988. MR 88m:14038
  • [OSS80] C. Okonek, M. Schneider, and H. Spindler, Vector Bundles on Complex Projective Spaces, Progr. Math. 3 (1980), Birkhäuser, Boston. MR 81b:14001
  • [R78] M. Reid, Bogomolov's theorem $c_1^2\le 4c_2$, in Int. Symp. on Algebraic Geometry, Kyoto, 1977, 623-642, (1978), Kinokuniya Book Store, Tokyo. MR 82b:14014
  • [RV] R. Remmert and A. Van de Ven, Zur Funktionentheorie homogener komplexer Mannigfaltigkeiten, Topology 2 (1963), 137-157. MR 26:5594

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14J60, 14M25, 14J25

Retrieve articles in all journals with MSC (2000): 14J60, 14M25, 14J25

Additional Information

Sandra Di Rocco
Affiliation: Department of Mathematics, KTH, S-100 44 Stockholm, Sweden

Andrew J. Sommese
Affiliation: Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556

Keywords: Toric variety, ample vector bundles, Chern numbers
Received by editor(s): March 10, 2001
Received by editor(s) in revised form: April 17, 2002
Published electronically: September 22, 2003
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society