Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Units in some families of algebraic number fields


Author: L. Ya. Vulakh
Journal: Trans. Amer. Math. Soc. 356 (2004), 2325-2348
MSC (2000): Primary 11R27, 11J70
DOI: https://doi.org/10.1090/S0002-9947-03-03368-3
Published electronically: November 4, 2003
MathSciNet review: 2048520
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Multi-dimensional continued fractions associated with $GL_n({\mathbf Z})$ are introduced and applied to find systems of fundamental units in some families of totally real fields and fields with signature (2,1).


References [Enhancements On Off] (What's this?)

  • 1. A. Ash, D. Mumford, M. Rapoport, and Y. Tai, Smooth Compactification of Locally Symmetric Varieties, Math. Sci. Press, Brookline, Mass., 1975. MR 56:15642
  • 2. A. J. Brentjes, Multi-dimensional continued fraction algorithms, Mathematical Centre Tracts 145, Mathematisch Centrum, Amsterdam, 1981. MR 83b:10038
  • 3. Bryuno, A.D. and Parusnikov, V.I., Klein polyhedra for two Davenport cubic forms, (Russian) Mat. Zametki, 56 (1994) 9-27; translation in Math. Notes 56 (1994) 994-1007 (1995). MR 96a:11061
  • 4. J.W.S. Cassels, An Introduction to the Geometry of Numbers, Springer-Verlag, 1959. MR 28:1175
  • 5. J.W.S. Cassels, Rational Quadratic Forms, Ac. Press, NY, 1978. MR 80m:10019
  • 6. H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Math. 138, Springer-Verlag, 1993. MR 94i:11105
  • 7. H. Cohen, Advanced Topics in Computational Algebraic Number Theory, Graduate Texts in Math. 193, Springer-Verlag, 1999. MR 2000k:11144
  • 8. J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Springer-Verlag, New York and Berlin, 1988. MR 89a:11067
  • 9. H. Davenport, On the product of three homogeneous linear forms. I, Proc. London Math. Soc.,44 (1938), 412-431.
  • 10. H. Davenport, Note on the product of three homogeneous linear forms, J. London Math. Soc.,16 (1941), 98-101. MR 3:70f
  • 11. H. Davenport, On the product of three homogeneous linear forms. IV, Math. Proc. Camb. Phil.. Soc.,39 (1943), 1-21. MR 4:212a
  • 12. H. Davenport, C. A. Rogers, Diophantine inequalities with an infinity of solutions, Philos. Trans. Roy. Soc. London, 242 (1950), 311-344. MR 12:394b
  • 13. P. B. Eberlein,Geometry of Nonpositively Curved Manifolds, The University of Chicago Press, 1996. MR 98h:53002
  • 14. Ennola, V., Cubic number fields with exceptional units, Computational number theory (Debrecen,1989), 103-128, de Gruyter, Berlin, 1991. MR 93e:11131
  • 15. M.-N. Gras, Table numérique du nombre de classes et des unités des extensions cycliques de degré de ${\mathbf Q}$, Publ. Math. Fac. Sci. Besançon, fasc. 2 (1977/78). MR 52:10678
  • 16. D. Grenier, Fundamental domains for the general linear group, Pacific J. Math. 132 (1988), 293-317. MR 89d:11055
  • 17. P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, 2nd ed. North-Holland Publishing Co., Amsterdam, 1987. MR 88j:11034
  • 18. A. Korkine and G. Zolotarev, Sur les formes quadratiques, Math. Ann. 6 (1873), 366-389.
  • 19. G. A. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces, C. R. Acad. Sci. Paris Sér 1 Math. 304 (1987), 251-257. MR 88f:11027
  • 20. G. Niklasch and N.P. Smart, Exceptional units in a family of quartic number fields, Math. Comp. 67 (1998), 759-772. MR 98g:11125
  • 21. Minemura, Kenji, On totally real cubic fields whose unit groups are of type $\{\theta +r,\theta +s\}$, Proc. Japan Acad. Ser. A Math. Sci. 74 (1998), 156-159. MR 99m:11126
  • 22. Wladislaw Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, Springer-Verlag, Berlin and New York, 1990. MR 91h:11107
  • 23. Parusnikov, V.I., Klein polyhedra for complete decomposable forms, Number theory (Eger, 1996), 453-463, de Gruyter, Berlin, 1998. MR 99f:11083
  • 24. S. S. Ryshkov and E. P. Baranovskii, Classical methods in the theory of lattice packings, Russian Math. Surveys, 34 (1979), 1-68. MR 81a:10045
  • 25. D. Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137-1152. MR 50:4537
  • 26. Swinnerton-Dyer, H.P.F., On the product of three homogeneous linear forms, Acta Arith. 18 (1971), 371-385. MR 45:1844
  • 27. A. Terras, Harmonic analysis on symmetric spaces and applications. II, Springer-Verlag, Berlin and New York, 1988. MR 89k:22017
  • 28. G. Voronoi, On a generalization of the Algorithm of Continued Fractions, Doctoral dissertation, Warsaw, 1896. (=Collected works, vol. 1, Izdat. Akad. Nauk Ukrain. SSR, Kiev 1952, 197-391) (Russian). MR 16:2d
  • 29. L.Ya. Vulakh, The Markov spectrum for triangle groups, J. Number Theory, 67 (1997), 11-28. MR 99e:11093
  • 30. L.Ya. Vulakh, Farey polytopes and continued fractions associated with discrete hyperbolic groups, Trans. Amer. Math. Soc., 351 (1999), 2295-2323. MR 99i:11054
  • 31. L.Ya. Vulakh, Diophantine approximation in Euclidean spaces, CRM Proceedings and Lecture Notes, 19 (1999), 341-351. MR 2000j:11099
  • 32. L.Ya. Vulakh, The Markov spectrum for Fuchsian groups, Trans. Amer. Math. Soc., 352 (2000), 4067-4094. MR 2000m:11056
  • 33. L.Ya. Vulakh, Continued fractions associated with SL $_{3}( {\mathbf Z})$ and units in complex cubic fields, Canad. J. Math. 54 (2002), 1305-1318.
  • 34. L. C. Washington, Class numbers of the simplest cubic fields, Math. Comp. 48 (1987), 371-384. MR 88a:11107
  • 35. L. C. Washington, A family of cyclic quartic fields arising from modular curves, Math. Comp. 57 (1991), 763-775. MR 92a:11120

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11R27, 11J70

Retrieve articles in all journals with MSC (2000): 11R27, 11J70


Additional Information

L. Ya. Vulakh
Affiliation: Department of Mathematics, The Cooper Union, 51 Astor Place, New York, New York 10003
Email: vulakh@cooper.edu

DOI: https://doi.org/10.1090/S0002-9947-03-03368-3
Keywords: Fundamental units, continued fractions, symmetric space
Received by editor(s): April 8, 2002
Received by editor(s) in revised form: March 30, 2003
Published electronically: November 4, 2003
Additional Notes: The author was supported in part by NSA Grant MDA904-99-1-0052
Article copyright: © Copyright 2003 American Mathematical Society

American Mathematical Society