Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the representation of integers as linear combinations of consecutive values of a polynomial


Authors: Jacques Boulanger and Jean-Luc Chabert
Journal: Trans. Amer. Math. Soc. 356 (2004), 5071-5088
MSC (2000): Primary 11A67; Secondary 11P05, 11R18, 13F20
DOI: https://doi.org/10.1090/S0002-9947-04-03569-X
Published electronically: June 29, 2004
MathSciNet review: 2084411
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $K$ be a cyclotomic field with ring of integers $\mathcal{O}_{K}$ and let $f$ be a polynomial whose values on $\mathbb{Z} $ belong to $\mathcal{O}_{K}$. If the ideal of $\mathcal{O}_{K}$ generated by the values of $f$ on $\mathbb{Z} $ is $\mathcal{O}_{K}$ itself, then every algebraic integer $N$ of $K$ may be written in the following form:

\begin{displaymath}N=\sum_{k=1}^l\;\varepsilon_{k}f(k)\end{displaymath}

for some integer $l$, where the $\varepsilon_{k}$'s are roots of unity of $K$. Moreover, there are two effective constants $A$ and $B$ such that the least integer $l$ (for a fixed $N$) is less than $A\,\widetilde{N}+B$, where

\begin{displaymath}\widetilde{N}= \max_{\sigma\in Gal(K/\mathbb{Q} )} \; \vert \sigma (N) \vert.\end{displaymath}


References [Enhancements On Off] (What's this?)

  • 1. P. T. BATEMAN, Note on the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 55 (1949), 1180-1181. MR 11:329e
  • 2. M. N. BLEICHER, On Prielipp's problem on signed sums of $k$th powers, J. Number Theory 56 (1996), 36-51. MR 96j:11011
  • 3. O. BODINI, P. DUCHET, AND S. LEFRANC, Autour d'un théorème d'Erdös sur les combinaisons à coefficients $\pm 1$ des premiers carrés, La Nouvelle Revue des Mathématiques de l'Enseignement Supérieur 112 (2001/2002), 3-8.
  • 4. J. W. S. CASSELS, On the representation of integers as the sums of distinct summands taken from a fixed set, Acta Sci. Math. Szeged 21 (1960), 111-124. MR 24:A103
  • 5. P. ERDÖS AND R. L. GRAHAM, Old and new problems and results in combinatorial number theory, Monographie 28 de L'enseignement mathématique, Geneva, 1980. MR 82j:10001
  • 6. R. L. GRAHAM, Complete sequences of polynomial values, Duke Math. J., 31 (1964), 275-285. MR 29:63
  • 7. H. KOCH, Number Theory, Algebraic Numbers and Function, American Mathematical Society, Providence, 2000. MR 2001a:11176
  • 8. M. B. NATHANSON, Elementary Methods in Number Theory, Springer, 2000. MR 2001j:11001
  • 9. N.J.A. SLOANE, The On-Line Encyclopedia in Integer Sequences, http://www.research. att.com/ñjas/sequences/index.html
  • 10. H. B. YU, Signed sums of polynomial values, Proc. Amer. Math. Soc. 130 (2002), 1623-1627. MR 2002m:11007

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11A67, 11P05, 11R18, 13F20

Retrieve articles in all journals with MSC (2000): 11A67, 11P05, 11R18, 13F20


Additional Information

Jacques Boulanger
Affiliation: Department of Mathematics, Université de Picardie, 80039 Amiens, France, LAMFA CNRS-UMR 6140, France
Email: jaboulanger@wanadoo.fr

Jean-Luc Chabert
Affiliation: Department of Mathematics, Université de Picardie, 80039 Amiens, France, LAMFA CNRS-UMR 6140, France
Email: jean-luc.chabert@u-picardie.fr

DOI: https://doi.org/10.1090/S0002-9947-04-03569-X
Received by editor(s): April 20, 2003
Received by editor(s) in revised form: September 24, 2003
Published electronically: June 29, 2004
Article copyright: © Copyright 2004 American Mathematical Society

American Mathematical Society