Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Transactions of the American Mathematical Society
Transactions of the American Mathematical Society
ISSN 1088-6850(online) ISSN 0002-9947(print)

 

Elements of specified order in simple algebraic groups


Author: R. Lawther
Journal: Trans. Amer. Math. Soc. 357 (2005), 221-245
MSC (2000): Primary 20G15
Published electronically: August 19, 2004
MathSciNet review: 2098093
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we let $G$ be a simple algebraic group and $r$ be a natural number, and consider the codimension in $G$ of the variety of elements $g\in G$ satisfying $g^r=1$. We shall obtain a lower bound for this codimension which is independent of characteristic, and show that it is attained if $G$ is of adjoint type.


References [Enhancements On Off] (What's this?)

  • 1. N. Bourbaki, Groupes et algèbres de Lie, Chapitres 4, 5 and 6, Hermann, Paris (1975). MR 0240238 (39:1590)
  • 2. J.F. Carlson, Z. Lin, D.K. Nakano and B.J. Parshall, ``The restricted nullcone'', Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math. 325 (2003), 51-75.MR 1988985 (2004g:17017)
  • 3. B. Chang, ``The conjugate classes of Chevalley groups of type $(G_2)$'', J. Algebra 9 (1968), 190-211. MR 0227258 (37:2843)
  • 4. D. Deriziotis, ``Centralizers of semisimple elements in a Chevalley group'', Comm. Algebra 9 (1981), 1997-2014. MR 0638635 (83e:20043)
  • 5. H. Enomoto, ``The conjugacy classes of Chevalley groups of type $(G_2)$ over finite fields of characteristic $2$ or $3$'', J. Fac. Sci. Univ. Tokyo 16 (1970), 497-512. MR 0262352 (41:6960)
  • 6. B. Hartley and M. Kuzucuoglu, ``Centralizers of elements in locally finite simple groups'', Proc. London Math. Soc. 62 (1991), 301-324. MR 1085643 (92d:20040)
  • 7. W.H. Hesselink, ``Nilpotency in classical groups over a field of characteristic $2$'', Math. Z. 166 (1979), 165-181. MR 0525621 (82d:14030)
  • 8. R. Lawther, ``Jordan block sizes of unipotent elements in exceptional algebraic groups'', Comm. Algebra 23(11) (1995), 4125-4156.MR 1351124 (96h:20084)
  • 9. R. Lawther, M.W. Liebeck and G.M. Seitz, ``Fixed point spaces in actions of exceptional algebraic groups'', Pac. J. Math. 205 (2002), 339-391. MR 1922739 (2003g:20080)
  • 10. M.W. Liebeck and A. Shalev, ``Classical groups, probabilistic methods and the $(2,3)$-generation problem'', Annals of Math. 144 (1996), 77-125. MR 1405944 (97e:20106a)
  • 11. M.W. Liebeck and A. Shalev, ``Random $(r,s)$-generation of finite classical groups'', Bull. London Math. Soc. 34 (2002), 185-188. MR 1874245 (2002i:20100)
  • 12. M.W. Liebeck and A. Shalev, ``Fuchsian groups, finite simple groups and representation varieties'', to appear in Invent. Math.
  • 13. T. Matsuki, ``The orbits of affine symmetric spaces under the action of minimal parabolic subgroups'', J. Math. Soc. Japan 31 (1979), 331-357. MR 0527548 (81a:53049)
  • 14. K. Mizuno, ``The conjugate classes of Chevalley groups of type $E_6$'', J. Fac. Sci. Univ. Tokyo 24 (1977), 525-563. MR 0486170 (58:5951)
  • 15. K. Mizuno, ``The conjugate classes of unipotent elements of the Chevalley groups $E_7$ and $E_8$'', Tokyo J. Math 3 (1980), 391-461.MR 0605099 (82m:20046)
  • 16. G.M. Seitz, ``Double cosets in algebraic groups'', in Algebraic groups and their representations (ed. R.W. Carter and J. Saxl), NATO ASI Series 517, Kluwer, Dordrecht (1998), pp. 241-257. MR 1670773 (99k:20096)
  • 17. K. Shinoda, ``The conjugacy classes of Chevalley groups of type $(F_4)$ over finite fields of characteristic $2$'', J. Fac. Sci. Univ. Tokyo 21 (1974), 133-159. MR 0349863 (50:2356)
  • 18. T. Shoji, ``The conjugacy classes of Chevalley groups of type $(F_4)$ over finite fields of characteristic $p\neq2$'', J. Fac. Sci. Univ. Tokyo 21 (1974), 1-17. MR 0357641 (50:10109)
  • 19. T.A. Springer, ``Some results on algebraic groups with involutions'', in Algebraic groups and related topics (ed. R. Hotta), Advanced Studies in Pure Mathematics 6, Kinokuniya, Tokyo and North-Holland, Amsterdam (1985), pp. 525-543. MR 0803346 (86m:20050)
  • 20. T.A. Springer and R. Steinberg, ``Conjugacy classes'', in Seminar on algebraic groups and related finite groups (ed. A. Borel et al.), Lecture Notes in Mathematics 131, Springer, Berlin (1970), pp. 167-266. MR 0268192 (42:3091)
  • 21. D.M. Testerman, ``$A_1$-type overgroups of elements of order $p$ in semisimple algebraic groups and the associated finite groups'', J. Algebra 177 (1995), 34-76. MR 1356359 (96j:20067)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20G15

Retrieve articles in all journals with MSC (2000): 20G15


Additional Information

R. Lawther
Affiliation: Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, United Kingdom
Address at time of publication: Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Cambridge University, Cambridge CB3 0WB, United Kingdom

DOI: http://dx.doi.org/10.1090/S0002-9947-04-03694-3
PII: S 0002-9947(04)03694-3
Received by editor(s): July 18, 2003
Published electronically: August 19, 2004
Article copyright: © Copyright 2004 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.