The cohomology of the Steenrod algebra and representations of the general linear groups
Author:
Nguyên H. V. Hung
Journal:
Trans. Amer. Math. Soc. 357 (2005), 40654089
MSC (2000):
Primary 55P47, 55Q45, 55S10, 55T15
Published electronically:
May 20, 2005
MathSciNet review:
2159700
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be the algebraic transfer that maps from the coinvariants of certain representations to the cohomology of the Steenrod algebra. This transfer was defined by W. Singer as an algebraic version of the geometrical transfer . It has been shown that the algebraic transfer is highly nontrivial, more precisely, that is an isomorphism for and that is a homomorphism of algebras. In this paper, we first recognize the phenomenon that if we start from any degree and apply repeatedly at most times, then we get into the region in which all the iterated squaring operations are isomorphisms on the coinvariants of the representations. As a consequence, every finite family in the coinvariants has at most nonzero elements. Two applications are exploited. The first main theorem is that is not an isomorphism for . Furthermore, for every , there are infinitely many degrees in which is not an isomorphism. We also show that if detects a nonzero element in certain degrees of , then it is not a monomorphism and further, for each , is not a monomorphism in infinitely many degrees. The second main theorem is that the elements of any family in the cohomology of the Steenrod algebra, except at most its first elements, are either all detected or all not detected by , for every . Applications of this study to the cases and show that does not detect the three families , and , and that does not detect the family .
 1.
J.
F. Adams, A periodicity theorem in homological algebra, Proc.
Cambridge Philos. Soc. 62 (1966), 365–377. MR 0194486
(33 #2696)
 2.
J.
F. Adams, Operations of the 𝑛th kind in 𝐾theory,
and what we don’t know about 𝑅𝑃^{∞}, New
developments in topology (Proc. Sympos. Algebraic Topology, Oxford, 1972),
Cambridge Univ. Press, London, 1974, pp. 1–9. London Math. Soc.
Lecture Note Ser., No. 11. MR 0339178
(49 #3941)
 3.
J.
F. Adams, J.
H. Gunawardena, and H.
Miller, The Segal conjecture for elementary abelian
𝑝groups, Topology 24 (1985), no. 4,
435–460. MR
816524 (87m:55026), http://dx.doi.org/10.1016/00409383(85)90014X
 4.
J.
Michael Boardman, Modular representations on the homology of powers
of real projective space, Algebraic topology (Oaxtepec, 1991)
Contemp. Math., vol. 146, Amer. Math. Soc., Providence, RI, 1993,
pp. 49–70. MR 1224907
(95a:55041), http://dx.doi.org/10.1090/conm/146/01215
 5.
E.
H. Brown Jr. and F.
P. Peterson, 𝐻*(𝑀𝑂) as an algebra over the
Steenrod algebra, Conference on homotopy theory (Evanston, Ill., 1974)
Notas Mat. Simpos., vol. 1, Soc. Mat. Mexicana, México, 1975,
pp. 11–19. MR
761717
 6.
R. R. Bruner, The cohomology of the mod 2 Steenrod algebra: A computer calculation, WSU Research Report 37 (1997), 217 pages.
 7.
Robert
R. Bruner, Lê
M. Hà, and Nguy\cftil{e}n
H. V. Hung, On the behavior of the algebraic
transfer, Trans. Amer. Math. Soc.
357 (2005), no. 2,
473–487. MR 2095619
(2005k:55010), http://dx.doi.org/10.1090/S000299470403661X
 8.
D.
P. Carlisle and R.
M. W. Wood, The boundedness conjecture for the action of the
Steenrod algebra on polynomials, Adams Memorial Symposium on Algebraic
Topology, 2 (Manchester, 1990), London Math. Soc. Lecture Note Ser.,
vol. 176, Cambridge Univ. Press, Cambridge, 1992,
pp. 203–216. MR 1232207
(95f:55015), http://dx.doi.org/10.1017/CBO9780511526312.019
 9.
Donald
M. Davis, An infinite family in the cohomology of the Steenrod
algebra, J. Pure Appl. Algebra 21 (1981), no. 2,
145–150. MR
614377 (82e:55034), http://dx.doi.org/10.1016/00224049(81)900037
 10.
Nguy\cftil{e}n
H. V. Hu’ng, Spherical classes and the algebraic
transfer, Trans. Amer. Math. Soc.
349 (1997), no. 10, 3893–3910. MR 1433119
(98e:55020), http://dx.doi.org/10.1090/S0002994797019910
 11.
Nguy\cftil{e}n
H. V. Hu’ng, The weak conjecture on spherical classes,
Math. Z. 231 (1999), no. 4, 727–743. MR 1709493
(2000g:55019), http://dx.doi.org/10.1007/PL00004750
 12.
Nguy\cftil{e}n
H. V. Hu’ng and Tr\cfgrv{a}n
Ngọc Nam, The hit problem for the Dickson
algebra, Trans. Amer. Math. Soc.
353 (2001), no. 12, 5029–5040. MR 1852092
(2002f:55041), http://dx.doi.org/10.1090/S0002994701027052
 13.
M. Kameko, Products of projective spaces as Steenrod modules, Thesis, Johns Hopkins University 1990.
 14.
D.
Kraines, On excess in the Milnor basis, Bull. London Math.
Soc. 3 (1971), 363–365. MR 0300271
(45 #9317)
 15.
Nicholas
J. Kuhn, Generic representations of the finite general linear
groups and the Steenrod algebra. I, Amer. J. Math.
116 (1994), no. 2, 327–360. MR 1269607
(95c:55022), http://dx.doi.org/10.2307/2374932
 16.
W. H. Lin, Private communication, December 2002.
 17.
WenHsiung
Lin and Mark
Mahowald, The Adams spectral sequence for Minami’s
theorem, Homotopy theory via algebraic geometry and group
representations (Evanston, IL, 1997) Contemp. Math., vol. 220, Amer.
Math. Soc., Providence, RI, 1998, pp. 143–177. MR 1642893
(99f:55023), http://dx.doi.org/10.1090/conm/220/03098
 18.
Arunas
Liulevicius, The factorization of cyclic reduced powers by
secondary cohomology operations, Mem. Amer. Math. Soc. No.
42 (1962), 112. MR 0182001
(31 #6226)
 19.
Ib
Madsen and R.
James Milgram, The classifying spaces for surgery and cobordism of
manifolds, Annals of Mathematics Studies, vol. 92, Princeton
University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1979.
MR 548575
(81b:57014)
 20.
John
W. Milnor and John
C. Moore, On the structure of Hopf algebras, Ann. of Math. (2)
81 (1965), 211–264. MR 0174052
(30 #4259)
 21.
Norihiko
Minami, The iterated transfer analogue of the
new doomsday conjecture, Trans. Amer. Math.
Soc. 351 (1999), no. 6, 2325–2351. MR 1443884
(99i:55023), http://dx.doi.org/10.1090/S0002994799020371
 22.
Huỳnh
Mui, Modular invariant theory and cohomology algebras of symmetric
groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22
(1975), no. 3, 319–369. MR 0422451
(54 #10440)
 23.
Huỳnh
Mùi, Dickson invariants and Milnor basis of the Steenrod
algebra, Topology, theory and applications (Eger, 1983) Colloq.
Math. Soc. János Bolyai, vol. 41, NorthHolland, Amsterdam,
1985, pp. 345–355. MR 863917
(88a:55019)
 24.
Huỳnh
Mùi, Cohomology operations derived from modular
invariants, Math. Z. 193 (1986), no. 1,
151–163. MR
852916 (88e:55015), http://dx.doi.org/10.1007/BF01163361
 25.
F. P. Peterson, Generators of as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., No. 833, April 1987.
 26.
Stewart
B. Priddy, On characterizing summands in the classifying space of a
group. I, Amer. J. Math. 112 (1990), no. 5,
737–748. MR 1073007
(91i:55020), http://dx.doi.org/10.2307/2374805
 27.
Stewart
Priddy and Clarence
Wilkerson, Hilbert’s Theorem 90 and the Segal conjecture for
elementary abelian 𝑝groups, Amer. J. Math.
107 (1985), no. 4, 775–785. MR 796902
(87a:55007), http://dx.doi.org/10.2307/2374356
 28.
William
M. Singer, The transfer in homological algebra, Math. Z.
202 (1989), no. 4, 493–523. MR 1022818
(90i:55035), http://dx.doi.org/10.1007/BF01221587
 29.
William
M. Singer, On the action of Steenrod squares on
polynomial algebras, Proc. Amer. Math. Soc.
111 (1991), no. 2,
577–583. MR 1045150
(91f:55007), http://dx.doi.org/10.1090/S00029939199110451509
 30.
Martin
C. Tangora, On the cohomology of the Steenrod algebra, Math.
Z. 116 (1970), 18–64. MR 0266205
(42 #1112)
 31.
Clarence
Wilkerson, Classifying spaces, Steenrod operations and algebraic
closure, Topology 16 (1977), no. 3,
227–237. MR 0442932
(56 #1307)
 32.
R.
M. W. Wood, Steenrod squares of polynomials and the Peterson
conjecture, Math. Proc. Cambridge Philos. Soc. 105
(1989), no. 2, 307–309. MR 974986
(90a:55030), http://dx.doi.org/10.1017/S0305004100067797
 33.
R.
M. W. Wood, Problems in the Steenrod algebra, Bull. London
Math. Soc. 30 (1998), no. 5, 449–517. MR 1643834
(99h:55028), http://dx.doi.org/10.1112/S002460939800486X
 1.
 J. F. Adams, A periodicity theorem in homological algebra, Proc. Cambridge Philos. Soc. 62 (1966), 365377. MR 0194486 (33:2696)
 2.
 J. F. Adams, Operations of the nth kind in theory, and what we don't know about , New Developments in Topology, G. Segal (ed.), London Math. Soc. Lect. Note Series 11 (1974), 19. MR 0339178 (49:3941)
 3.
 J. F. Adams, J. H. Gunawardena and H. Miller, The Segal conjecture for elementary Abelian groups, Topology 24 (1985), 435460. MR 0816524 (87m:55026)
 4.
 J. M. Boardman, Modular representations on the homology of powers of real projective space, Algebraic Topology: Oaxtepec 1991, M. C. Tangora (ed.), Contemp. Math. 146 (1993), 4970. MR 1224907 (95a:55041)
 5.
 E. Brown and F. P. Peterson, as an algebra over the Steenrod algebra, Notas Mat. Simpos. 1 (1975), 1121. MR 0761717
 6.
 R. R. Bruner, The cohomology of the mod 2 Steenrod algebra: A computer calculation, WSU Research Report 37 (1997), 217 pages.
 7.
 R. R. Bruner, Lê M. Hà and Nguyen H. V. Hung, On behavior of the algebraic transfer, Trans. Amer. Math. Soc. 357 (2005), 473487. MR 2095619
 8.
 D. P. Carlisle and R. M. W. Wood, The boundedness conjecture for the action of the Steenrod algebra on polynomials, Adams Memorial Symposium on Algebraic Topology 2, N. Ray and G. Walker (ed.) London Math. Soc. Lect. Note Series 176 (1992), 203216. MR 1232207 (95f:55015)
 9.
 D. M. Davis, An infinite family in the cohomology of the Steenrod algebra, J. Pure Appl. Algebra 21 (1981), 145150. MR 0614377 (82e:55034)
 10.
 Nguyen H. V. Hung, Spherical classes and the algebraic transfer, Trans. Amer. Math. Soc. 349 (1997), 38933910. MR 1433119 (98e:55020)
 11.
 Nguyen H. V. Hung, The weak conjecture on spherical classes, Math. Zeit. 231 (1999), 727743. MR 1709493 (2000g:55019)
 12.
 Nguyen H. V. Hung and Tran N. Nam, The hit problem for the Dickson algebra, Trans. Amer. Math. Soc. 353 (2001), 50295040.MR 1852092 (2002f:55041)
 13.
 M. Kameko, Products of projective spaces as Steenrod modules, Thesis, Johns Hopkins University 1990.
 14.
 D. Kraines, On excess in the Milnor basis, Bull. London Math. Soc. 3 (1971), 363365.MR 0300271 (45:9317)
 15.
 N. J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra, Amer. Jour. Math. 116 (1994), 327360.MR 1269607 (95c:55022)
 16.
 W. H. Lin, Private communication, December 2002.
 17.
 W. H. Lin and M. Mahowald, The Adams spectral sequence for Minami's theorem, Contemp. Math. 220 (1998), 143177. MR 1642893 (99f:55023)
 18.
 A. Liulevicius, The factorization of cyclic reduced powers by secondary cohomology operations, Mem. Amer. Math. Soc. 42 (1962).MR 0182001 (31:6226)
 19.
 I. Madsen and R. J. Milgram, The classifying spaces for surgery and cobordism of manifolds, Ann of Math. Studies, No. 92, Princeton Univ. Press, 1979. MR 0548575 (81b:57014)
 20.
 J. Milnor and J. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211264. MR 0174052 (30:4259)
 21.
 N. Minami, The iterated transfer analogue of the new doomsday conjecture, Trans. Amer. Math. Soc. 351 (1999), 23252351. MR 1443884 (99i:55023)
 22.
 Huynh Mùi, Modular invariant theory and cohomology algebras of symmetric groups, Jour. Fac. Sci. Univ. Tokyo, 22 (1975), 310369.MR 0422451 (54:10440)
 23.
 Huynh Mùi, Dickson invariants and Milnor basis of the Steenrod algebra, Topology, theory and application, Coll. Math. Soc. Janos Bolyai 41, NorthHolland (1985), 345355. MR 0863917 (88a:55019)
 24.
 Huynh Mùi, Cohomology operations derived from modular invariants, Math. Zeit. 193 (1986), 151163. MR 0852916 (88e:55015)
 25.
 F. P. Peterson, Generators of as a module over the Steenrod algebra, Abstracts Amer. Math. Soc., No. 833, April 1987.
 26.
 S. Priddy, On characterizing summands in the classifying space of a group, I, Amer. Jour. Math. 112 (1990), 737748. MR 1073007 (91i:55020)
 27.
 S. Priddy and C. Wilkerson, Hilbert's theorem 90 and the Segal conjecture for elementary abelian groups, Amer. Jour. Math. 107 (1985), 775785.MR 0796902 (87a:55007)
 28.
 W. M. Singer, The transfer in homological algebra, Math. Zeit. 202 (1989), 493523.MR 1022818 (90i:55035)
 29.
 W. M. Singer, On the action of Steenrod squares on polynomial algebras, Proc. Amer. Math. Soc. 111 (1991), 577583. MR 1045150 (91f:55007)
 30.
 M. C. Tangora, On the cohomology of the Steenrod algebra, Math. Zeit. 116 (1970), 1864. MR 0266205 (42:1112)
 31.
 C. Wilkerson, Classifying spaces, Steenrod operations and algebraic closure, Topology 16 (1977), 227237. MR 0442932 (56:1307)
 32.
 R. M. W. Wood, Steenrod squares of polynomials and the Peterson conjecture, Math. Proc. Cambridge Phil. Soc. 105 (1989), 307309.MR 0974986 (90a:55030)
 33.
 R. M. W. Wood, Problems in the Steenrod algebra, Bull. London Math. Soc. 30 (1998), 449517. MR 1643834 (99h:55028)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2000):
55P47,
55Q45,
55S10,
55T15
Retrieve articles in all journals
with MSC (2000):
55P47,
55Q45,
55S10,
55T15
Additional Information
Nguyên H. V. Hung
Affiliation:
Department of Mathematics, Vietnam National University, Hanoi 334 Nguyễn Trãi Street, Hanoi, Vietnam
Email:
nhvhung@vnu.edu.vn
DOI:
http://dx.doi.org/10.1090/S0002994705038894
PII:
S 00029947(05)038894
Keywords:
Adams spectral sequences,
Steenrod algebra,
modular representations,
invariant theory
Received by editor(s):
November 13, 2003
Published electronically:
May 20, 2005
Additional Notes:
This work was supported in part by the National Research Program, Grant No. 140 804
Dedicated:
Dedicated to Professor Nguyễn Hữu Anh on the occasion of his sixtieth birthday
Article copyright:
© Copyright 2005
by Nguy\ecirti n H. V. H\uhorn ng, Nguy\ecirti n H. V. Khu\^e and Nguy\ecirti n My Trang
