Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the power series coefficients of certain quotients of Eisenstein series

Authors: Bruce C. Berndt and Paul R. Bialek
Journal: Trans. Amer. Math. Soc. 357 (2005), 4379-4412
MSC (2000): Primary 11F30, 11F27, 33E05
Published electronically: June 9, 2005
MathSciNet review: 2156715
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In their last joint paper, Hardy and Ramanujan examined the coefficients of modular forms with a simple pole in a fundamental region. In particular, they focused on the reciprocal of the Eisenstein series $E_6(\tau)$. In letters written to Hardy from nursing homes, Ramanujan stated without proof several more results of this sort. The purpose of this paper is to prove most of these claims.

References [Enhancements On Off] (What's this?)

  • 1. G. E. Andrews and B. C. Berndt, Ramanujan's Lost Notebook, Part II, Springer, New York, to appear.
  • 2. B. C. Berndt, Modular transformations and generalizations of several formulae of Ramanujan, Rocky Mt. J. Math. 7 (1977), 147-189. MR 0429703 (55:2714)
  • 3. B. C. Berndt, Ramanujan's Notebooks, Part II, Springer-Verlag, New York, 1989. MR 0970033 (90b:01039)
  • 4. B. C. Berndt, Ramanujan's Notebooks, Part III, Springer-Verlag, New York, 1991. MR 1117903 (92j:01069)
  • 5. B. C. Berndt, P. R. Bialek, and A. J. Yee, Formulas of Ramanujan for the power series coefficients of certain quotients of Eisenstein series, International Mathematics Research Notices 2002, no. 21, 1077-1109. MR 1904462 (2003j:11047)
  • 6. B. C. Berndt and R. A. Rankin, Ramanujan: Letters and Commentary, History of Math., vol. 9, American Mathematical Society, Providence, 1995; London Mathematical Society, London, 1995. MR 1353909 (97c:01034)
  • 7. P. R. Bialek, Ramanujan's Formulas for the Coefficients in the Power Series Expansions of Certain Modular Forms, Ph.D. thesis, University of Illinois at Urbana-Champaign, Urbana, IL, 1995.
  • 8. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Clarendon Press, Oxford, 1960.
  • 9. G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. (2) 17 (1918), 75-118.
  • 10. G. H. Hardy and S. Ramanujan, On the coefficients in the expansions of certain modular functions, Proc. Royal Soc. A 95 (1918), 144-155.
  • 11. I. Niven, H. S. Zuckerman, and H. L. Montgomery, An Introduction to the Theory of Numbers, 5th ed., Wiley, New York, 1991. MR 1083765 (91i:11001)
  • 12. J. Lehner, The Fourier coefficients of automorphic forms on horocyclic groups, III, Mich. Math. J. 7 (1960), 65-74. MR 0126550 (23:A3846)
  • 13. H. Petersson, Konstruktion der Modulformen und der zu gewissen Grenzkreisgruppen gehörigen automorphen Formen von positiver reeller Dimension und die vollständige Bestimmung ihrer Fourierkoeffzienten, S.-B. Heidelberger Akad. Wiss. Math. Nat. Kl. (1950), 415-494. MR 0041172 (12:806e)
  • 14. H. Petersson, Über automorphe Orthogonalfunktionen und die Konstruktion der automorphen Formen von positiver reeller Dimension, Math. Ann. 127 (1954), 33-81. MR 0060542 (15:686e)
  • 15. H. Petersson, Über automorphe Formen mit Singularitäten im Diskontinuitätsgebiet, Math. Ann. 129 (1955), 370-390. MR 0071459 (17:129c)
  • 16. H. Poincaré, Oeuvres, Vol. 2, Gauthiers-Villars, Paris, 1916.
  • 17. S. Ramanujan, On certain arithmetical functions, Trans. Cambridge Philos. Soc. 22 (1916), 159-184.
  • 18. S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge, 1927; reprinted by Chelsea, New York, 1962; reprinted by the American Mathematical Society, Providence, RI, 2000.
  • 19. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988. MR 0947735 (89j:01078)
  • 20. R. A. Rankin, Modular Forms and Functions, Cambridge University Press, Cambridge, 1977. MR 0498390 (58:16518)
  • 21. B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, New York, 1974. MR 0412107 (54:236)
  • 22. H. S. Zuckerman, On the expansion of certain modular forms of positive dimension, Amer. J. Math. 62 (1940), 127-152. MR 0001306 (1:214c)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 11F30, 11F27, 33E05

Retrieve articles in all journals with MSC (2000): 11F30, 11F27, 33E05

Additional Information

Bruce C. Berndt
Affiliation: Department of Mathematics, University of Illinois, 1409 West Green Street, Urbana, Illinois 61801

Paul R. Bialek
Affiliation: Department of Mathematics, Trinity International University, 2065 Half Day Road, Deerfield, Illinois 60015

Keywords: Eisenstein series, modular forms, formulas for power series coefficients, Ramanujan's letters to Hardy
Received by editor(s): September 30, 2000
Received by editor(s) in revised form: June 1, 2003
Published electronically: June 9, 2005
Additional Notes: The first author’s research was partially supported by grant MDA904-00-1-0015 from the National Security Agency.
Article copyright: © Copyright 2005 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society