Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Inseparable extensions of algebras over the Steenrod algebra with applications to modular invariant theory of finite groups


Author: Mara D. Neusel
Journal: Trans. Amer. Math. Soc. 358 (2006), 4689-4720
MSC (2000): Primary 55S10, 13A50, 13-xx, 55-xx
DOI: https://doi.org/10.1090/S0002-9947-05-03801-8
Published electronically: November 1, 2005
MathSciNet review: 2231868
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider purely inseparable extensions $ \textrm{H}\hookrightarrow \sqrt[\mathscr{P}^*]{\textrm{H}}$ of unstable Noetherian integral domains over the Steenrod algebra. It turns out that there exists a finite group $ G\le\textrm{GL}(V)$ and a vector space decomposition $ V=W_0\oplus W_1\oplus\dotsb\oplus W_e$ such that $ \overline{\textrm{H}}=(\mathbb{F}[W_0] \otimes\mathbb{F}[W_1]^p\otimes\dotsb\otimes\mathbb{F}[W_e]^{p^e})^G$ and $ \overline{\sqrt[\mathscr{P}^*]{\textrm{H}}}=\mathbb{F}[V]^G$, where $ \overline{(-)}$ denotes the integral closure. Moreover, $ \textrm{H}$ is Cohen-Macaulay if and only if $ \sqrt[\mathscr{P}^*]{\textrm{H}}$ is Cohen-Macaulay. Furthermore, $ \overline{\textrm{H}}$ is polynomial if and only if $ \sqrt[\mathscr{P}^*]{\textrm{H}}$ is polynomial, and $ \sqrt[\mathscr{P}^*]{\textrm{H}}=\mathbb{F}[h_1,\dotsc,h_n]$ if and only if

$\displaystyle \textrm{H}=\mathbb{F}[h_1,\dotsc,h_{n_0},h_{n_0+1}^p,\dotsc,h_{n_1}^p, h_{n_1+1}^{p^2},\dotsc,h_{n_e}^{p^e}],$

where $ n_e=n$ and $ n_i=\dim_{\mathbb{F}}(W_0\oplus\dotsb\oplus W_i)$.


References [Enhancements On Off] (What's this?)

  • 1. Nathan Jacobson, Lecture in Abstract Algebra, Vol. III: Theory of Fields and Galois Theory, D. van Nostrand Company, Inc., Princeton, NJ, 1964. MR 0172871 (30:3087)
  • 2. Mara D. Neusel, Invariants of some Abelian $ p$-Groups in Characteristic $ p$, Proc. Amer. Math. Soc. 125 (1997), 1921-1931. MR 1377000 (97i:13004)
  • 3. Mara D. Neusel, Inverse Invariant Theory and Steenrod Operations, Memoirs Amer. Math. Soc., vol. 146, AMS, Providence, RI, 2000. MR 1693799 (2000m:55023)
  • 4. Mara D. Neusel, Localizations over the Steenrod Algebra. The lost Chapter, Math. Zeitschrift 235 (2000), 353-378. MR 1795513 (2001m:16033)
  • 5. Mara D. Neusel, Unstable Cohen-Macaulay Algebras, Mathematical Research Letters 8 (2001), 1-13. MR 1839483 (2002d:13030)
  • 6. Mara D. Neusel and Larry Smith, Invariant Theory of Finite Groups, Mathematical Surveys and Monographs 94, AMS, Providence, RI, 2002. MR 1869812 (2002k:13012)
  • 7. Clarence W. Wilkerson, Classifying Spaces, Steenrod Operations and Algebraic Closure, Topology 16 (1977), 227-337. MR 0442932 (56:1307)
  • 8. Clarence W. Wilkerson, Rings of Invariants and Inseparable Forms of Algebras over the Steenrod Algebra, pp. 381-396 in: Recent progress in homotopy theory (Baltimore, MD, 2001), Contemp. Math. 293, AMS, Providence, RI, 2002. MR 1890745 (2003d:55020)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 55S10, 13A50, 13-xx, 55-xx

Retrieve articles in all journals with MSC (2000): 55S10, 13A50, 13-xx, 55-xx


Additional Information

Mara D. Neusel
Affiliation: Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas 79409-1042
Email: Mara.D.Neusel@ttu.edu

DOI: https://doi.org/10.1090/S0002-9947-05-03801-8
Keywords: Inseparable extensions, inseparable closure, Cohen-Macaulay, $\Delta$-relation, $\Delta_s$-relation, derivation, restricted Lie algebra, Steenrod algebra, Dickson algebra, invariant rings of finite groups.
Received by editor(s): September 18, 2003
Received by editor(s) in revised form: June 22, 2004
Published electronically: November 1, 2005
Dedicated: Dedicated to Clarence W. Wilkerson on the occasion of his $60$th birthday
Article copyright: © Copyright 2005 American Mathematical Society

American Mathematical Society