Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Rotation numbers for random dynamical systems on the circle


Authors: Weigu Li and Kening Lu
Journal: Trans. Amer. Math. Soc. 360 (2008), 5509-5528
MSC (2000): Primary 60H15; Secondary 34C35, 58F11, 58F15, 58F36
DOI: https://doi.org/10.1090/S0002-9947-08-04619-9
Published electronically: May 29, 2008
MathSciNet review: 2415083
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study rotation numbers of random dynamical systems on the circle. We prove the existence of rotation numbers and the continuous dependence of rotation numbers on the systems. As an application, we prove a theorem on analytic conjugacy to a circle rotation.


References [Enhancements On Off] (What's this?)

  • 1. L. Arnold.
    Random Dynamical Systems.
    Springer, New York, 1998. MR 1723992 (2002m:37087)
  • 2. V. I. Arnold.
    Geometric Methods in the Theory of Ordinary Differential Equations.
    Springer-Verlag, New York, 1983. MR 695786 (84d:58023)
  • 3. V. I. Arnold.
    Small denominators I. On the mapping of a circle into itself.
    Izv. Akad. Nauk. Math., 25 (1961), 21-86. MR 0140699 (25:4113)
  • 4. S.-N. Chow, K. Lu, and Y.-Q. Shen.
    Normal form and linearization for quasiperiodic systems.
    Trans. Amer. Math. Soc., 331 (1992), 361-376. MR 1076612 (92g:34048)
  • 5. R. Fabbri, R. Johnson, and C. Núñez.
    Rotation number for non-autonomous linear Hamiltonian systems. II. The Floquet coefficients.
    Z. Angew. Math. Phys., 54 (2003), 652-676. MR 1994030 (2005f:37115)
  • 6. R. Fabbri, R. Johnson, and C. Núñez.
    Rotation number for non-autonomous linear Hamiltonian systems. I. Basic properties.
    Z. Angew. Math. Phys., 54 (2003), 484-502. MR 2048667 (2005f:37114)
  • 7. R. Fabbri, R. Johnson, and C. Núñez.
    Disconjugacy and the rotation number for linear, non-autonomous Hamiltonian systems.
    Ann. Mat. Pura Appl., 185 (2006), S3-S21. MR 2187752 (2007e:37012)
  • 8. H. Feng and M. Zhang.
    Optimal estimates on rotation number of almost periodic systems.
    Z. Angew. Math. Phys., 57 (2006), 183-204. MR 2214068 (2006k:37110)
  • 9. J. Franks.
    Rotation numbers and instability sets.
    Bull. Amer. Math. Soc., 40 (2003), 263-279. MR 1978565 (2004h:37063)
  • 10. M. R. Herman.
    Sur la conjugaison differentielle des difféomorphismes du cercle á des rotations.
    Publ. Math. I.H.E.S., 49(1979), 5-234. MR 538680 (81h:58039)
  • 11. R. Johnson and J. Moser.
    The rotation number for almost periodic potentials.
    Comm. Math. Phys., 84 (1982), 403-438. MR 667409 (83h:34018)
  • 12. A. Katok and B. Hasselblatt.
    Introduction to the modern theory of dynamical systems. With a supplementary chapter by Katok and Leonardo Mendoza. Encyclopedia of Mathematics and its Applications,
    54. Cambridge University Press, Cambridge, 1995. MR 1326374 (96c:58055)
  • 13. Y. Katznelson and D. Ornstein.
    The differentiability of the conjugation of certain diffeomorphism of the circle.
    Ergod. Th. and Dyn. Sys., 9 (1989), 643-680. MR 1036902 (91i:58121)
  • 14. J. K. Moser.
    A rapidly covergent iteration method and nonlinear differential equations II.
    Ann. Scuo. Norm. Sup. Pisa., 20 (1966), 499-535. MR 0206461 (34:6280)
  • 15. H. Poincaré.
    Sur le probléme des trois corps et les équations de la dynamique
    Acta Math., 13 (1890), 1-270.
  • 16. P. R. C. Ruffino.
    A sampling theorem for rotation numbers of linear processes in $ \mathbb{R}^2$. Random operators and Stochastic Equations, 8 (2000), 175-188. MR 1765876 (2001e:37009)
  • 17. Ya. G. Sinai and K. M. Khanin.
    Smoothness of conjugacies of diffeomorphisms of the circle with rotations.
    Russ. Math. Surv., 44 (1989), 69-99. MR 997684 (90i:58183)
  • 18. J.-C. Yoccoz.
    Conjugaison differentielle des difféomorphismes du cercle dont le nombre de rotation vérifie une condition Diophantienne.
    Ann. Sci. Ec. Norm. Sup., 17 (1984), 333-361. MR 777374 (86j:58086)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 60H15, 34C35, 58F11, 58F15, 58F36

Retrieve articles in all journals with MSC (2000): 60H15, 34C35, 58F11, 58F15, 58F36


Additional Information

Weigu Li
Affiliation: School of Mathematics, Peking University, Beijing 100871, People’s Republic of China
Email: weigu@math.pku.edu.cn

Kening Lu
Affiliation: Department of Mathematics, Brigham Young University, Provo, Utah 84602
Email: klu@math.byu.edu

DOI: https://doi.org/10.1090/S0002-9947-08-04619-9
Keywords: Rotation number, random maps of circle, random differential equations.
Received by editor(s): November 24, 2006
Published electronically: May 29, 2008
Additional Notes: This work was partially supported by NSF0200961, NSF0401708, and NSFC10371083 (second author) and NSFC10531010 and NNSF10525104 (first author).
Article copyright: © Copyright 2008 American Mathematical Society

American Mathematical Society