Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Toeplitz operators and localization operators


Author: Miroslav Englis
Journal: Trans. Amer. Math. Soc. 361 (2009), 1039-1052
MSC (2000): Primary 47B35; Secondary 42C40, 32M15, 81R30
DOI: https://doi.org/10.1090/S0002-9947-08-04547-9
Published electronically: August 18, 2008
MathSciNet review: 2452833
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that for any localization operator on the Fock space with polynomial window, there exists a constant coefficient linear partial differential operator $ D$ such that the localization operator with symbol $ f$ coincides with the Toeplitz operator with symbol $ Df$. An analogous result also holds in the context of Bergman spaces on bounded symmetric domains. This verifies a recent conjecture of Coburn and simplifies and generalizes recent results of Lo.


References [Enhancements On Off] (What's this?)

  • [Ar] J. Arazy: A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Multivariable operator theory (R.E. Curto, R.G. Douglas, J.D. Pincus, N. Salinas, editors), Contemporary Mathematics 185, Amer. Math. Soc., Providence, 1995, pp. 7-65. MR 1332053 (96e:46034)
  • [AU] J. Arazy, H. Upmeier: Invariant symbolic calculi and eigenvalues of invariant operators on symmetric domains, Function spaces, interpolation theory, and related topics (Lund, 2000) (A. Kufner, M. Cwikel, M. Engliš, L.-E. Persson, G. Sparr, editors), Walter de Gruyter, Berlin, 2002, pp. 151-211. MR 1943284 (2003k:32031)
  • [BC1] C.A. Berger, L.A. Coburn: Toeplitz operators and quantum mechanics, J. Funct. Anal. 68 (1986), 273-299. MR 859136 (88b:46098)
  • [BC2] C.A. Berger, L.A. Coburn: Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), 813-829. MR 882716 (88c:47044)
  • [BC3] C.A. Berger, L.A. Coburn: Heat flow and Berezin-Toeplitz estimates, Amer. J. Math. 116 (1994), 563-590. MR 1277446 (95g:47038)
  • [Be] F.A. Berezin: Covariant and contravariant symbols of operators, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 1134-1167 (in Russian); English translation in Math. USSR Izv. 6 (1972), 1117-1151. MR 0350504 (50:2996)
  • [C1] L. Coburn: On the Berezin-Toeplitz calculus, Proc. Amer. Math. Soc. 129 (2001), 3331-3338. MR 1845010 (2002e:47031)
  • [C2] L. Coburn: The Bargmann isometry and Gabor-Daubechies wavelet localization operators, Systems, approximation, singular integral operators, and related topics (A. Borichev, N. Nikolski, editors), Operator Theory: Advances and Applications 129, Birkhäuser Verlag, Basel, 2001, pp. 169-178. MR 1882695 (2003a:47054)
  • [C3] L. Coburn: Symbol calculus for Gabor-Daubechies windowed Fourier localization operators, preprint.
  • [D1] I. Daubechies: Time frequency localization operators: A geometric phase space approach, IEEE Trans. Inform. Theory 34 (1988), 605-612. MR 966733
  • [D2] I. Daubechies: Ten lectures on wavelets, CBMS-NSF Regional Conference Series 6, SIAM, Philadelphia, 1992. MR 1162107 (93e:42045)
  • [E] M. Engliš: Toeplitz operators and group representations, J. Fourier Anal. Appl., 13 (2007), 243-265. MR 2334609 (2008e:47072)
  • [FN] H.G. Feichtinger, K. Nowak: A Szegö-type theorem for Gabor-Toeplitz localization operators, Michigan Math. J. 49 (2001), 13-21. MR 1827072 (2003b:47049)
  • [Fo] G.B. Folland: Harmonic analysis in phase space, Annals of Mathematics Studies 122, Princeton University Press, Princeton, 1989. MR 983366 (92k:22017)
  • [H] S. Helgason: Groups and geometric analysis, Academic Press, Orlando, 1984. MR 754767 (86c:22017)
  • [Ja] J. Janas: Unbounded Toeplitz operators in the Segal-Bargmann space III, Math. Scand. 88 (2001), 126-136. MR 1813524 (2002a:47043)
  • [Ko] A. Korányi: Function spaces on bounded symmetric domains, Analysis and geometry on complex homogeneous domains (J. Faraut, S. Kaneyuki, A. Korányi, Q.-K. Lu, G. Roos, editors), Progress in Mathematics 185, Birkhäuser, Basel-Boston-Berlin, 2000.
  • [Lo] M.-L. Lo: The Bargmann transform and windowed Fourier localization, Integral Equations Operator Theory 57 (2007), 397-412. MR 2307818 (2008b:47049)
  • [MN] F. de Mari, K. Nowak: Localization type Berezin-Toeplitz operators on bounded symmetric domains, J. Geom. Anal. 12 (2002), 9-27. MR 1881289 (2003b:47048)
  • [OZ] B. Ørsted, G. Zhang: Weyl quantization and tensor products of Fock and Bergman spaces, Indiana Univ. Math. J. 43 (1994), 551-583. MR 1291529 (95h:22008)
  • [Ru] W. Rudin: Functional analysis, McGraw-Hill, 1973. MR 0365062 (51:1315)
  • [Up] H. Upmeier: Toeplitz Operators and Index Theory in Several Complex Variables, Operator Theory: Advances and Applications 81, Birkhäuser, Basel, 1996. MR 1384981 (97f:47022)
  • [Wo] M.W. Wong: Wavelet transforms and localization operators, Operator Theory: Advances and Applications 136, Birkhäuser Verlag, Basel, 2002. MR 1918652 (2003i:42003)
  • [Zh] K. Zhu: Operator theory in function spaces, Marcel Dekker, New York, 1990. MR 1074007 (92c:47031)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 47B35, 42C40, 32M15, 81R30

Retrieve articles in all journals with MSC (2000): 47B35, 42C40, 32M15, 81R30


Additional Information

Miroslav Englis
Affiliation: Mathematics Institute, Silesian University at Opava, Na Rybníčku 1, 74601 Opava, Czech Republic – and – Mathematics Institute, Žitná 25, 11567 Prague 1, Czech Republic
Email: englis@math.cas.cz

DOI: https://doi.org/10.1090/S0002-9947-08-04547-9
Keywords: Toeplitz operator, localization operator, bounded symmetric domain, Segal-Bargmann space, Bergman space
Received by editor(s): July 31, 2006
Received by editor(s) in revised form: May 7, 2007
Published electronically: August 18, 2008
Additional Notes: This research was supported by GA ČR grant no. 201/06/0128 and Ministry of Education research plan no. MSM4781305904.
Article copyright: © Copyright 2008 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society