Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A comparison principle for the complex Monge-Ampère operator in Cegrell's classes and applications


Authors: Nguyen Van Khue and Pham Hoang Hiep
Journal: Trans. Amer. Math. Soc. 361 (2009), 5539-5554
MSC (2000): Primary 32W20; Secondary 32U15
DOI: https://doi.org/10.1090/S0002-9947-09-04730-8
Published electronically: May 15, 2009
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we will first prove a result about the convergence in capacity. Next we will obtain a general decomposition theorem for complex Monge-Ampère measures which will be used to prove a comparison principle for the complex Monge-Ampère operator.


References [Enhancements On Off] (What's this?)

  • 1. P. Åhag, The complex Monge-Ampère operator on bounded hyperconvex domains, Ph.D. Thesis, Umeå University, 2002.
  • 2. Z. Błocki, On the definition of the Monge-Ampère operator in $ \mathbf C^2$, Math. Ann., 328 (2004), 415-423. MR 2036329 (2004m:32074)
  • 3. Z. Błocki, The domain of definition of the complex Monge-Ampère operator, Amer. J. Math, 128 (2006), 519-530. MR 2214901 (2006k:32076)
  • 4. E. Bedford and B. A.Taylor, The Dirichlet problem for the complex Monge-Ampère operator, Invent. Math. 37 (1976), 1-44. MR 0445006 (56:3351)
  • 5. E. Bedford and B. A.Taylor, A new capacity for plurisubharmonic functions, Acta Math., 149 (1982), 1-40. MR 674165 (84d:32024)
  • 6. E. Bedford and B. A.Taylor, Fine topology, Silov boundary, and $ (dd^c)^n$, J. Funct. Anal. 72 (1987), 225-251. MR 886812 (88g:32033)
  • 7. U. Cegrell, Pluricomplex energy, Acta Math., 180 (1998), 187-217. MR 1638768 (99h:32016)
  • 8. U. Cegrell, The general definition of the complex Monge-Ampère operator, Ann. Inst. Fourier (Grenoble) 54 (2004), 159-179. MR 2069125 (2005d:32062)
  • 9. U. Cegrell, A general Dirichlet problem for the complex Monge-Ampère operator, Ann. Polon. Math., 94 (2008), 131-147. MR 2438854
  • 10. U. Cegrell, S. Kołodziej and A. Zeriahi, Subextention of plurisubharmonic functions with weak singularities, Math. Zeit., 250 (2005), 7-22. MR 2136402 (2005m:32064)
  • 11. R. Czyz, Convergence in capacity of the Perron-Bremermann envelope, Michigan Math. J., 53 (2005), 497-509. MR 2207203 (2006k:32066)
  • 12. D. Coman, N. Levenberg and E. A. Poletsky, Quasianalyticity and pluripolarity, J. Amer. Math. Soc., 18 (2005), 239-252. MR 2137977 (2006e:32043)
  • 13. J-P. Demailly, Monge-Ampère operators, Lelong numbers and intersection theory, Complex Analysis and Geometry, Univ. Ser. Math., Plenum, New York, 1993, 115-193. MR 1211880 (94k:32009)
  • 14. J-P. Demailly, Potential theory in several variables, preprint (1989).
  • 15. S. Kołodziej, The range of the complex Monge-Ampère operator, II, Indiana Univ. Math. J., 44 (1995), 765-782. MR 1375348 (96m:32013)
  • 16. P. Hiep, A characterization of bounded plurisubharmonic functions, Ann. Polon. Math., 85 (2004), 233-238. MR 2181753 (2006g:32051)
  • 17. P. Hiep, The comparison principle and Dirichlet problem in the class $ \mathcal E_p(f)$, $ p>0$, Ann. Polon. Math., 88 (2006), 247-261. MR 2260404 (2007f:32048)
  • 18. P. Lelong, Notions capacitaires et fonctions de Green pluricomplexes dans les espaces de Banach. C.R. Acad. Sci. Paris Ser. Imath., 305:71-76, 1987. MR 901138 (89g:46082)
  • 19. Y. Xing, Continuity of the complex Monge-Ampère operator. Proc. Amer. Math. Soc., 124 (1996), 457-467. MR 1322940 (96d:32015)
  • 20. Y. Xing, Complex Monge-Ampère measures of pluriharmonic functions with bounded values near the boundary. Canad. J. Math., 52, (2000),1085-1100. MR 1782339 (2001h:32070)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 32W20, 32U15

Retrieve articles in all journals with MSC (2000): 32W20, 32U15


Additional Information

Nguyen Van Khue
Affiliation: Department of Mathematics, Hanoi University of Education, Dai hoc Su Pham Hanoi, Cau Giay, Hanoi, Vietnam

Pham Hoang Hiep
Affiliation: Department of Mathematics, Hanoi University of Education, Dai hoc Su Pham Hanoi, Cau Giay, Hanoi, Vietnam
Email: phhiep_vn@yahoo.com

DOI: https://doi.org/10.1090/S0002-9947-09-04730-8
Keywords: Complex Monge-Amp\`ere operator, plurisubharmonic function
Received by editor(s): December 29, 2006
Received by editor(s) in revised form: January 3, 2008
Published electronically: May 15, 2009
Article copyright: © Copyright 2009 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society