Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Local equivalence of symmetric hypersurfaces in  $ \mathbb{C}^2$

Author: Martin Kolár
Journal: Trans. Amer. Math. Soc. 362 (2010), 2833-2843
MSC (2010): Primary 32V35, 32V40
Published electronically: January 21, 2010
MathSciNet review: 2592937
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The Chern-Moser normal form and its analog on finite type hypersurfaces in general do not respect symmetries. Extending the work of N. K. Stanton, we consider the local equivalence problem for symmetric Levi degenerate hypersurfaces of finite type in $ \mathbb{C}^2$. The results give complete normalizations for such hypersurfaces, which respect the symmetries. In particular, they apply to tubes and rigid hypersurfaces, providing an effective classification. The main tool is a complete normal form constructed for a general hypersurface with a tube model. As an application, we describe all biholomorphic maps between tubes, answering a question posed by N. Hanges. Similar results for hypersurfaces admitting nontransversal symmetries are obtained.

References [Enhancements On Off] (What's this?)

  • 1. M.S.Baouendi, P.Ebenfelt, L.P.Rothschild, Convergence and finite determination of formal CR mappings, J. Amer. Math. Soc. 13 (2000), p. 697-723. MR 1775734 (2001h:32063)
  • 2. S.S.Chern and J.Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), p. 219-271. MR 0425155 (54:13112)
  • 3. P.Ebenfelt, New invariant tensors in CR structures and a normal form for real hypersurfaces at a generic Levi degeneracy, J. Diff. Geometry 50 (1998), p. 207-247. MR 1684982 (2000a:32077)
  • 4. P.Ebenfelt, X.Huang, D.Zaitsev, The equivalence problem and rigidity for hypersurfaces embedded into hyperquadrics, Amer. J. Math. 127 (2005), p. 169-191. MR 2115664 (2006c:32047)
  • 5. P. Ebenfelt, B. Lamel, D. Zaitsev, Degenerate real hypersurfaces in $ \mathbb{C}^2$ with few automorphisms, Trans. Amer. Math. Soc. 361 (2009), p. 3241-3267.
  • 6. V.V.Ezhov, An example of a real-analytic hypersurface with a nonlinearizable stability group, Math. Notes 44 (1988), p. 824-828. MR 980583 (90e:32020)
  • 7. V.V.Ezhov, M.Kolář, G.Schmalz, Degenerate hypersurfaces with a two-parametric family of automorphisms, Complex Variables and Elliptic Equations 54 (2009), p. 283-291.
  • 8. T.Garrity, R.Mizner, The equivalence problem for higher-codimensional CR structures, Pacific J. Math. 177 (1997), p. 211-235. MR 1444781 (99b:32007)
  • 9. G.Francsics, N.Hanges, Analytic singularities of the Bergman kernel for tubes, Duke Math. J. 108 (2001), p. 539-580. MR 1838661 (2002f:32057)
  • 10. N.Hanges, Personal communication.
  • 11. H.Jacobowitz, An introduction to CR structures, Mathematical Surveys and Monographs 32, AMS (1990). MR 1067341 (93h:32023)
  • 12. S.Y.Kim, D.Zaitsev, Equivalence and embedding problems for CR-structures of any codimension, Topology 44 (2005), p. 557-584. MR 2122216 (2005j:32037)
  • 13. J.J.Kohn, Boundary behaviour of $ \bar \partial$ on weakly pseudoconvex manifolds of dimension two, J. Diff. Geometry 6 (1972), p. 523-542. MR 0322365 (48:727)
  • 14. M.Kolář, Normal forms for hypersurfaces of finite type in $ \mathbb{C}^2$, Math. Res. Lett. 12 (2005), p. 897-910. MR 2189248 (2007d:32034)
  • 15. M.Kolář, Local symmetries of finite type hypersurfaces in $ \mathbb{C}^2$, Sci. China A 49 (2006), p. 1633-1641. MR 2288220 (2007j:32036)
  • 16. N.G.Kruzhilin, A.V.Loboda, Linearization of local automorphisms of pseudoconvex surfaces, Dokl. Akad. Nauk SSSR 271 (1983), p. 280-282. MR 718188 (85c:32052)
  • 17. H.Poincaré, Les fonctions analytique de deux variables et la représentation conforme, Rend. Circ. Mat. Palermo 23 (1907), p. 185-220.
  • 18. G.Schmalz, A.Spiro, Explicit construction of a Chern-Moser connection for CR manifolds of codimension two, Ann. Mat. Pura Appl. 4 (2006), p. 337-379. MR 2231029 (2007b:32055)
  • 19. N.K.Stanton, A normal form for rigid hypersurfaces in $ \mathbb{C}^2$, Amer. J. Math. 113 (1991), p. 877-910. MR 1129296 (92k:32031)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 32V35, 32V40

Retrieve articles in all journals with MSC (2010): 32V35, 32V40

Additional Information

Martin Kolár
Affiliation: Department of Mathematics and Statistics, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic

Received by editor(s): October 5, 2007
Published electronically: January 21, 2010
Additional Notes: The author was supported by a grant of the GA ČR no. 201/08/0397
Article copyright: © Copyright 2010 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society